Реакции с углекислым газом. "мягкая" химия

Г. ШАРОВ. По материалам немецкого еженедельника "Die Zeit".

В поисках путей утилизации углекислого газа - побочного продукта многих технологий, а также одного из главных виновников "парникового эффекта" - сегодня выдвигается множество проектов (см. "Наука и жизнь" № ). Среди них такие экзотические, как захоронение сжиженного CO 2 на океанских глубинах или закачка этого газа в выработанные под морским дном газовые емкости. В предлагаемом материале рассказыв ается о вполне "земном" решении данной проблемы и дается информация о некоторых сферах промышленности, в которых СО 2 уже с успехом работает. Исследователи нашли способ использовать углекислый газ в ранее необычных для него областях производства, где он станет основой новых технологий. В результате отрицательные нагрузки этого газа на природу ослабнут.

В мире сегодня ежегодно используют 15 миллионов тонн органических растворителей и еще большее количество воды или водных смесей - таковы требования разных технологических процессов. Однако есть возможность такую "мокрую" химию заменить "сухой", основанной на СО 2 . Об этом говорится в работе доктора Иозефа Де Симоне, обладателя премии Президента США, учрежденной за успехи в химии, не приносящей вреда природе. Сейчас ученый создает экологически безупречный растворитель для промышленности. На двух примерах Де Симоне показывает, как углекислый газ становится основой новой химии.

На фирме "Дюпон" (США) заканчивается сборка огромного агрегата для производства тефлона, известного многим как покрытие "непригорающих" сковородок. До настоящего времени слой тефлона изготавливался при участии соединений фтора - элемента, получившего название "убийца озонового слоя" нашей планеты. Разработчики фирмы предложили ввести в прцесс двуокись углерода: выигрывает экология, а тефлон, получаемый по более простой технологии, станет значительно дешевле.

Неожиданное применение СО 2: он способен служить чистящим средством. Немецкая фирма "Мицелл" уже готова внедрить оборудование для сухой очистки посуды в многолюдных ресторанах "Макдоналдс". Но это лишь одно из направлений работ. Наиболее серьезный проект - очистка с помощью СО 2 металлов от жиров и масел, которые применяют при резании, точении и фрезеровании деталей. Здесь масштабы утилизации углекислого газа поистине грандиозны.

Текстиль - материал, совсем не похожий на металл, но оказалось, что и его можно отмывать с помощью СО 2 в специальных машинах, заменяющих стиральные.

"Сухая" стирка происходит таким образом. Клиент кладет грязные вещи в мешок (в нем же он затем получит исполненный заказ). Процесс состоит из двух либо трех периодов по четверти часа, во время которых одежда находится в барабане, в принципе, такой же конструкции, что и в обычной стиральной машине, но только большего размера и, главное, герметически закрывающемся.

Барабан, в который заложены мешки с грязной одеждой, заполняют углекислым газом, находящимся под давлением, в результате чего он переходит в жидкое состояние. Стирка происходит, когда содержимое барабана нагревается до 31 о С, а давление в нем достигает 72,9 атмосферы (именно потому, что обработка материалов идет при сравнительно низких параметрах, химию СО 2 и называют "мягкой"). Жидкий углекислый газ энергично закипает, наступает состояние равновесия жидкости и газа, в котором они становятся неотличимыми друг от друга. Ученые называют такое фазовое состояние двуокиси углерода сверхкритичес ким (сокращенно - ск; и такая двуокись углерода обозначается как скСО 2).

В этом-то сверхкритическом состоянии углекислота и становится превосходным моющим средством. После "стирки" в барабан добавляют детергент - вещество, похожее на обычный стиральный порошок, и ткань "прополаскивается" в этой смеси. Потом давление снижают, СО 2 снова становится газом, который уходит из ткани, захватывая с собой частички грязи и детергента (они остаются на фильтрах). Чистую двуокись углерода после каждой "стирки" улавливают, сжимают, и она снова готова к обработке следующей партии одежды. За каждый цикл улетучивается лишь два процента СО 2 .

Через 40-45 минут клиент получает белье, очищенное от жира, пятен, грязи, прохладное, свежее, словно обдутое морозным ветром.

У нового способа чистки много достоинств. Низкая температура сохраняет ткань, ее волокна не рвутся; скСО 2 , словно взрывная волна, проникает в поры и внутрь волокон и так же мгновенно при снижении давления в барабане удаляется из них. Это дает возможность "стирать" очень "деликатные" вещи, которые обычно не доверяют машине и химчистке. Ткани после стирки ничем не пахнут, тогда как запах обычных моющих и чистящих средств, например перхлорэтилена, стойко держится на вещах. А ведь он относится к вредным и для окружающей среды, и для нервной системы человека. К сожалению, у перхлорэтилена есть важное преимущество: он дешев. Да и машина для стирки с помощью двуокиси углерода стоит пока дорого - 150 000 долларов. Новый метод выдерживает конкуренцию лишь благодаря льготным налогам, поскольку во многих странах такого рода предприятия относятся к экологически чистым и поддерживаются правитель ствами.

Развитие новой, безопасной для природы химии идет по разным направлениям, правда, пока чаще в лабораторных и полупромышленных условиях. Вот перечень отраслей, в которых ожидаются революционные перемены: пищевая промышленность, изготовление лекарств и косметичес ких средств, биохимические производства, создание пластмасс, переработка природных материалов.

В семидесятых годах Курт Цозель, сотрудник нобелевского лауреата Карла Циглера, занялся изучением свойств СО 2 в сверхкритическом состоянии. Работы проводились в сотрудничестве с известной кофейной фирмой "Хааг". Цозель выяснил, что углекислый газ в сверхкритическом состоянии может выборочно растворить одно из веществ, находящихся в смеси, а потом, при понижении давления, выделить его из смеси. Он использовал это свойство для извлечения кофеина из бобов кофе. Способ оказался весьма удачным, и теперь в Германии именно так обрабатывают 100 000 тонн зеленых зерен ежегодно.

На пивоваренных заводах скСО 2 позволяет усиливать или ослаблять характерный для пива аромат. А в Австрии виноделы использовали это его свойство для сохранения букета вин. Потребность в природных ароматических добавках, получаемых из трав, пряностей, лекарственных растений, с каждым годом растет. Пока при их извлечении применяют высокое давление, но не далек тот день, когда скСО 2 сможет решить многие задачи индустрии запахов без помощи повышенных давлений, значит - дешевле.

Сотрудники Института угля в Руре доктор А. Фюрстнер и профессор В. Лейтнер на базе все той же двуокиси углерода в ее сверхкритическом состоянии создают новую химию растворителей. Как известно, многие химические реакции идут только в присутствии катализатора, без него процесс либо очень замедляется, либо вовсе не начинается. Такие классические катализаторы, как платина, родий или никель, нерастворимы в скСО 2 . Поэтому химики считали его лишь средством, "вытягивающим" какое-либо вещество из смеси, но никак не растворителем. Сейчас ситуация изменилась. Ученые нашли простой способ заставить многие металлы-катализаторы растворяться в скСО 2 и "плавать" в нем, как рыба в воде. Для этого к ним присоединяют своего рода "плавники" из полимерных фторсодержащих молекул. Теперь можно проводить каталитические процессы, не используя вредные органически е растворител и.

Реакциями в среде скСО 2 легко управлять. Это позволило получать многие органические вещества, представляющие собой относительно крупные циклические (кольцеобразные) молекулы, например антибиотики, намного проще, чем привычными способами. Циклы-кольца образуются из длинных молекул при смыкании их концевых участков. Но не все молекулярные цепочки смыкаются в кольца при химической реакции. Иногда концы соседних молекул сращиваются и образуют длинные молекулярные нити, так называемые линейные полимеры. При производстве антибиоти ков такая полимеризация крайне нежелательна.

В сверхкритической двуокиси углерода удается этот процесс прервать. В среде скСО 2 , так же как и при высоком давлении, реакционная смесь делается "плотнее": молекулы заметно теряют подвижность, в результате чего они реже сталкиваются с соседними молекулами, а чаще замыкаются сами на себя, формируя кольца. Очень важно и то, что в среде двуокиси углерода кольца получаются правильной формы.

Ближайшая задача - научиться получать на основе скСО 2 различные виды пластмасс для производства мебели, упаковочных материалов, ковров, обоев и даже деталей автомобилей. Все эти изделия будут дешевле производимых сегодня и, что важно, без характерных запахов, присущих употребляемым ныне растворителям.

Вполне возможно, что мир стоит на пороге решительных перемен в производстве пластмасс. Эта отрасль, как известно, развивается наиболее быстрыми темпами, опережая металлургию чугуна и алюминия. Сегодня объем ее продукции в мире измеряется сотнями миллионов тонн.

Приходит экологически чистое и более дешевое химическое производство, основанное на использовании двуокиси углерода, которая до сих пор считалась отходом энергетики, виновником возникнове ния "парникового эффекта" и связанных с ним серьезных климатических катастроф.

Можно надеяться, что именно здесь человечество найдет один из надежных и недорогих "складов", куда запрячет излишки СО 2 .

Оксид углерода(IV ), углекислый газ, был впервые описан известным ятрохимиком Яном Баптистом ван Гельмонтом (1579-1644), который наблюдал его образование при сжигании древесного угля, в результате спиртового брожения и при действии кислот на известняк СаСО 3 и поташ К 2 СО 3 . Он обнаружил присутствие этого газа в минеральной воде и в желудке человека. Английский химик Джозеф Блэк (1728-1799) назы­вал углекислый газ «фиксируемым воз­духом» на том основании, что он лег­ко поглощается щелочами.

Оксид углерода (IV ) - это бесцвет­ный газ без запаха, малорастворимый в воде (171,3 мл в 100 мл воды при 0 °С, 87,8 мл при 20 °С). Растворимость его резко возрастает при повышении дав­ления, что используется в приготовле­нии газированных напитков. При тем­пературе -78,5 °С углекислый газ замерзает, образуя белые кристаллы «сухого льда». «Сухой лёд» служит для охлаждения продуктов, например мо­роженого. Если бросить кусочек «сухо­го льда» в воду, он начнёт с шипением «таять», возгоняясь, т. е. переходя в га­зообразное состояние, минуя жидкое. Жидкий СО 2 можно получить при комнатной температуре и высоком дав­лении.

При 20 °С жидкий углекислый газ представляет собой подвижную бесцветную жидкость с плотностью 0,77 г/см 3 , плохо растворимую в воде.

Раствор углекислого газа в воде проявляет свойства слабой и неустой­чивой в водных растворах угольной кислоты Н 2 СО 3 . Саму кислоту лишь недавно удалось выделить в индивиду­альном виде при низких температурах. Её соли - карбонаты, напротив, дос­таточно устойчивы. Например, карбо­нат натрия Na 2 CO 3 плавится без раз­ложения при 858 °С.

Углекислый газ практически не проявляет окислительных свойств, не поддерживает горения и дыхания. Но бывают и исключения. Если внести в цилиндр с углекислым газом горящую магниевую ленту, магний какое-то вре­мя продолжает гореть и в атмосфере СО 2: 2 Mg +СО 2 =2 MgO +С, но вско­ре реакция прекращается.

Углекислый газ проявляет свойства кислотного оксида. Он легко вступает в реакцию с щелочами, что наблюдал в своих опытах ещё Блэк. Так, при пропу­скании углекислого газа через раствор щёлочи вначале образуется средний карбонат (стиральная сода): 2 NaOH +СО 2 = Na 2 CO 3 + H 2 O , который затем переходит в кислый (питьевую соду):

Na 2 CO 3 +СО 2 +Н 2 О=2 NaHCO 3 .


В атмосфере Земли содержится около 2,3 10 12 т углекислого газа, ещё больше (1,3 10 14 т) растворено в воде. Это количество постоянно воз­растает за счёт промышленных вы­бросов и работы транспорта.

Значительные количества промыш­ленных выбросов углекислого газа (примерно 50%) поглощаются зелёны­ми растениями. Они преобразуют СО 2 в углеводы, выделяя свободный кис­лород (процесс фотосинтеза). Около 30% выбрасываемого в атмосферу уг­лекислого газа растворяется в Миро­вом океане.

Небольшое количество углекислого газа в воздухе благоприятно сказывает­ся на дыхании, так как его молекулы стимулируют дыхательный центр голов­ного мозга. Повышенное же содержа­ние СО 2 опасно для здоровья человека: в высоких концентрациях углекислый газ тормозит процессы дыхания и обме­на веществ. Углекислый газ в полтора раза тяжелее воздуха и, следовательно, накапливается в подвалах, на дне пе­щер. Известны случаи отравления этим веществом со смертельным исходом.

В промышленности углекислый газ получают при обжиге известняков и доломитов. Он находит применение в производстве соды, свинцовых белил, как инертная среда для проведения многих химических реакций. Значи­тельное количество СО 2 расходуется на производство карбамата аммония (соли неустойчивой карбаминовой кис­лоты NH 2 COOH ), из которого получа­ют мочевину (карбамид) - ценное азотное удобрение.

Сегодня известно множество разнообразных газов. Какие-то из них человек получает лабораторными способами, из химических веществ, какие-то формируются сами в результате реакций в качестве побочных продуктов. А какие газы рождаются в природе? К основным таким газам естественного, природного происхождения относятся четыре:

  • природный газ, формула которого СН 4 ;
  • азот, N 2 ;
  • водород, Н 2 ;
  • углекислый газ, СО 2 .

Конечно, существуют и некоторые другие - кислород, сероводород, аммиак, монооксид углерода. Однако перечисленные выше являются практически значимыми для людей и используются ими в разных целях, в том числе как топливо.

Что такое природный газ?

Природным называется такой газ, который дает нам природа. То есть тот, содержание которого в недрах Земли гораздо выше и больше, чем то его количество, что получают в промышленности в результате химических реакций.

Общепринято называть природным газом метан, однако это не совсем так. Если рассмотреть состав такого газа по фракциям, то можно увидеть следующий его компонентный состав:

  • метан (до 96%);
  • этан;
  • пропан;
  • бутан;
  • водород;
  • углекислый газ;
  • азот;
  • сероводород (малые, следовые количества).

Таким образом, выходит, что природный газ - это смесь нескольких

Природный газ: формула

С химической точки зрения природный газ представляет собой смесь углеводородов линейного простого строения - метана, этана, пропана и бутана. Но так как больший объем составляет все же метан, то принято общую формулу природного газа выражать формулой непосредственно метана. Так, получается, что химическая формула природного газа метана -СН 4 .

Остальные компоненты имеют следующие эмпирические формулы в химии:

  • этан - С 2 Н 6 ;
  • пропан - С 3 Н 8 ;
  • бутан - С 4 Н 10 ;
  • углекислый газ - СО 2 ;
  • азот - N 2 ;
  • водород - Н 2 ;
  • сероводород - H 2 S.

Смесь таких веществ и является природным газом. Формула основного его соединения метана показывает, что содержание углерода в нем очень мало. Это сказывается на его физических свойствах, например, таких как способность гореть бесцветным, совершенно некоптящим пламенем. В то время как другие представители его предельных углеводородов или алканов) при горении образуют черное коптящее пламя.

Нахождение в природе

В природе данный газ встречается глубоко под землей, под толстыми и плотными пластами осадочных пород. Существует две основные теории происхождения природного газа в природе.

  1. Теория тектонических движений пород. Сторонники данной теории считают, что углеводороды содержатся в земных недрах всегда и поднимаются в результате тектонических движений и сокращений вверх. Наверху высокое давление и меняющаяся температура превращают их в результате химических реакций в два природных полезных ископаемых - нефть и газ.
  2. Биогенная теория говорит о другом методе, в результате которого образовался природный газ. Формула его отражает качественный состав - углерод и водород, что говорит о том, что в его образовании принимали участие живые органические существа, тела которых были большей частью построены из этих элементов, как и все живое на нашей планете, существующее до сих пор. С течением времени отмершие останки животных и растений опускались все ниже на дно океана, туда, где не существовало ни кислорода, ни бактерий, способных разложить и переработать эту органическую массу. В результате анаэробного окисления произошел распад биомассы, и за миллионы лет сформировалось два источника полезных ископаемых - нефть и газ. При этом основа и того и другого одинакова - и частично низкомолекулярные вещества. Химическая формула газа и нефти это доказывает. Однако при воздействии разных условий формируются и разные продукты: высокое давление и температура - газ, низкие показатели - нефть.

На сегодняшний день основными месторождениями и запасами газа обладают такие страны, как Россия, США, Канада, Иран, Норвегия и Нидерланды.

По своему агрегатному состоянию природный газ не всегда может содержаться только в состоянии газа. Есть несколько вариантов его конденсации:

  1. Газ растворен в молекулах нефти.
  2. Газ растворен в молекулах воды.
  3. Газ образует твердые газогидраты.
  4. При обычных условиях - газообразное соединение.

Каждое из этих состояний имеет свое месторождение и является очень ценным для человека.


Получение в лаборатории и промышленности

Помимо природных мест образования газа, существует ряд способов получить его в лабораторных условиях. Однако эти способы, безусловно, используются только для небольших порций продукта, так как экономически осуществлять синтез природного газа в лаборатории не выгодно.

Лабораторные способы:

  1. Гидролизом низкомолекулярного соединения - карбида алюминия: AL 4 C 3 + 12H 2 O = 3CH 4 + 4AL(OH) 3.
  2. Из ацетата натрия в присутствии щелочи: CH 3 COOH + NaOH = CH 4 + Na 2 CO 3.
  3. Из синтез-газа: CO+ 3H 2 = CH 4 + H 2 O.
  4. Из простых веществ - водорода и углерода - при повышенной температуре и давлении.

Химическая формула природного газа отражается формулой метана, поэтому все и для данного газа.

В промышленности метан получают добычей из природных месторождений и дальнейшей переработкой по фракциям. Также получаемый газ обязательно нуждается в очистке. Ведь формула природного газа метана показывает только часть тех составляющих, что он содержит. А для использования в быту нужен чистый газ, не содержащий других веществ, кроме метана. Отделяемый этан, пропан, бутан и другие газы также находят широкое применение.

Физические свойства

Формула газа дает представление о том, какими физическими свойствами он должен обладать. Рассмотрим, что же это за характеристики.

  1. Бесцветное вещество, не имеющее запаха.
  2. Приблизительная плотность варьируется в пределах 0,7-1 кг/м 3.
  3. Температура горения 650 0 С.
  4. Почти в два раза легче воздуха.
  5. Теплота, выделяемая при сгорании одного кубического метра газа, равна 46 млн Джоулей.
  6. В повышенных концентрациях (свыше 15%) в воздухе газ очень взрывоопасен.
  7. При использовании в качестве топлива проявляет октановое число, равное 130.

Чистый газ получают только после прохождения его через специальные очистные станции (установки), которые воздвигаются на месте добычи ископаемого.


Применение

Существует несколько основных областей Ведь помимо основной его составляющей, формула газа которой СН 4 , используются и все другие компоненты смеси.

1. Бытовая сфера жизни людей. Сюда относится газ для приготовления пищи, отопления жилых зданий, топлива для котельных и так далее. В газ, который используется для приготовления пищи, добавляют специальные вещества, относящиеся к группе меркаптанов. Делается это для того, чтобы в случае протекания трубы или другого упущения газа люди могли почувствовать его запах и принять меры. Смесь бытового газа (а это смесь пропана и бутана) чрезвычайно взрывоопасна в больших концентрациях. Меркаптаны же делают специфическим и неприятным на запах природный газ. Формула их включает такие элементы, как сера и фосфор, что и придает им такую специфику.

2. Химическое производство. В данной сфере одним из главных начальных веществ для многих реакций получения важных соединений является природный газ, формула которого показывает, в каких синтезах он может принимать участие:

  • основа при производстве пластмасс, которые являются самым распространенным современным материалом практически для всех сфер промышленности;
  • сырье при синтезе этина, цианистого водорода и аммиака. Сами перечисленные продукты в дальнейшем идут на производстве многих синтетических волокон и тканей, удобрений и утеплителей в строительстве;
  • каучук, метанол, органические кислоты - образуются из метана и других веществ. Находят применение практически во всех сферах человеческой жизни;
  • полиэтилен и многие другие соединения синтетической природы получили благодаря именно метану.

3. Использование в качестве топлива. Причем для любого вида деятельности человека, начиная от заправки соответствующего типа настольных ламп и до работы тепловых электростанций. Данный вид топлива считается экологически правильным и целесообразным на фоне всех альтернативных способов. Однако при сгорании метан образует углекислый газ, как любое другое органическое вещество. А он, как известно, причина парникового эффекта Земли. Поэтому перед людьми стоит задача поиска еще более чистого и качественного источника тепловой энергии.

Пока это все основные источники, которые используют природный газ. Формула его, если брать все комплексные составляющие, показывает, что он практически возобновляемый ресурс, только время для этого нужно очень много. Нашей стране с запасами газа чрезвычайно повезло, ведь такого количество природного ископаемого хватит на много сотен лет не только самой России, но и многим странам мира через экспорт.


Азот

Является составной частью нефтяных и газовых природных месторождений. Кроме того, данный газ занимает большую часть объема в воздухе (78%), а также встречается в виде природных соединений селитр в литосфере.

Как простое вещество практически не используется живыми организмами азот. Формула его имеет вид N 2 , или, с точки зрения химических связей, N≡N. Наличие такой крепкой связи говорит о высокой стабильности и химической инертности молекулы при обычных условиях. Именно это и объясняет возможность существования большого количества этого газа в свободном виде в атмосфере.

В виде простого вещества азот способен фиксироваться особыми организмами - клубеньковыми бактериями. Они затем перерабатывают в более подходящую форму для растений этот газ и таким образом осуществляют минеральное питание корневых растительных систем.

Есть несколько основных соединений, в виде которых существует в природе азот. Формула их следующая:

  • оксиды - NO 2, N 2 O, N 2 O 5;
  • кислоты - азотистая HNO 2 и азотная HNO 3 (образуются при грозовых разрядах из оксидов в атмосфере воздуха);
  • селитры - KNO 3 , NaNO 3 и так далее.

Человеком азот используется не только в виде газа, но и в жидком состоянии. Он обладает способностью переходить в жидкое состояние при температуре ниже -170 0 С, что позволяет применять его для замораживания растительных и животных тканей, многих материалов. Именно поэтому широкое применение жидкий азот находит в медицине.

Также азот является основой для получения одного из главных своих соединений - аммиака. Производство данного вещества многотоннажно, так как оно очень широко применяется в быту и промышленности (получение каучуков, красителей, пластмасс, синтетических волокон, органических кислот, лакокрасочное производство, взрывчатые вещества и так далее).


Диоксид углерода

Какова формула вещества? Углекислый газ записывается как СО 2 . Связь в молекуле ковалентная слабополярная, двойные прочные химические силы между углеродом и кислородами. Это говорит о стабильности и инертности молекулы при обычных условиях. Данный факт подтверждается свободным существованием углекислого газа в атмосфере Земли.

Это вещество является составной частью природного газа и нефти, а также накапливается в верхних слоях атмосферы планеты, вызывая так называемый парниковый эффект.

Огромное количество углекислого газа формируется при сгорании любого вида органического топлива. Будь то уголь, дрова, газ или другое топливо, полное сгорание приводит к образованию воды и этого вещества.

Отсюда и получается, что накопление его в атмосфере неизбежно. Поэтому важной задачей современного общества является поиск альтернативного, дающего минимум парникового эффекта топлива.


Водород

Еще одно попутное соединение, встречающееся в составе природных полезных ископаемых, - это водород. Газ, формула которого - Н 2 . Самое легкое вещество из всех известных на сегодняшний день.

Благодаря своим особым свойствам занимает в периодической системе два положения - среди щелочных металлов и галогенов. Имея один электрон, способен его как отдавать (металлические свойства, восстановительные), так и принимать (неметаллические свойства, окислительные).

Основная область использования - это экологически чистое топливо, за которым ученые видят будущее. Причины:

  • неограниченное количество запасов этого газа;
  • образование в результате горения только воды.

Однако полная технология освоения водорода как источника энергии требует доработки еще многих нюансов.


Формулы для расчетов массы, плотности и объема газов

В физике и химии применяются несколько основных способов для расчетов по газам. Так, например, если речь идет об одном из самых основных параметров, таких как масса газа, формула для расчета будет следующей:

m = V*þ, где þ - это плотность вещества, а V - его объем.

Например, если нам нужно рассчитать массу природного газа объемом 1 метр кубический при нормальных условиях, то мы берем стандартное среднее значение его плотности в справочных материалах. Оно будет равно 0,68 кг/м 3 . Теперь, когда мы знаем объем и плотность газа, формула для расчета вполне удовлетворяет требованиям. Тогда:

m (CH 4) = 0,68 кг/м 3 * 1 м 3 = 0,68 кг, так как метры кубические сокращаются.

Формула объема газа, напротив, складывается из показателей массы и плотности. То есть мы можем выразить это значение из приведенной выше конфигурации:

V = m/þ, тогда при стандартных условиях объем 2 кг метана будет равен: 2/0,68 = 2,914 м 3 .

Также в более сложных случаях (когда условия нестандартные) для расчета массы и объема газов используют уравнение Менделеева-Клапейрона, которое имеет вид:

p*V = m/M*R*T, где р - давление газа, V - его объем, m и M - масса и молярная масса соответственно, R - универсальная газовая постоянная, равная 8,314, Т - температура в Кельвинах.

Такая формула объема газа позволяет получать расчеты весьма приближенные к значению идеального газа, который существует чисто гипотетически и используется для абстрактного понятия при решении задач в физике и химии. Также рассчитать объем можно по уравнению Бойля-Мариотта, которое имеет вид:

V=p н *V н *T/p*T н, где значения с индексом н - это значения при нормальных стандартных условиях.

Чтобы расчет был максимально точный и соответствовал действительности, необходимо учитывать такой параметр, как Формула для вычисления этого параметра пока еще вопрос спорный. Принято пользоваться самой обычной простой, которая имеет вид:

þ = m 0 * n, где m 0 - масса молекулы (кг), а n - концентрация, единица измерения - 1/м 3 .

Однако в ряде случаев необходимо использовать другие, более сложные и полные расчеты с несколькими переменными для получения точного и близкого к идеальному результата.



Понравилась статья? Поделиться с друзьями: