Smart Dust: у пыли уже хватает ума помочь человеку. Что такое умная пыль и как ее распространение меняет мир вокруг нас Умная пыль нанотехнологии

Представьте мир, где беспроводные устройства размером с кристалл соли. Эти “лилипуты” оснащены автономным питанием и вычислительными мощностями. Кроме того, есть камеры и механизмы для беспроводной передачи данных. Такие микроэлектромеханические системы (MEMS) называются умная пыль. И скоро они могут “распорошиться” по соседству. Разбираемся, что это и где применяют “пылинки”.

Что может умная пыль

MEMS оснащены миниатюрными датчиками, которые могут уловить все — от колебаний света до вибрации температур. Из-за миниатюрности устройства могут оставаться подвешенными в пространстве, как частички пыли. Они могут:

  • собирать огромные массивы данных, в том числе ускорение, напряжение, давление, влажность, звук и другое;
  • обрабатывать все это с помощью встроенного компьютера;
  • хранить data в памяти;
  • передавать информацию по беспроводной связи в облако, базу или другим “пылинкам”.

3D-печать в микромасштабе

Печатать компонентов пыли на коммерчески доступном 3D-принтере сделает технологию доступной. Ранее мы подробно рассмотрели и применение технологии в разных сферах жизни человека.

Оптические линзы миниатюрных датчиков позволят получить изображения сверхвысокого качества. Сейчас мы даже не можем представить его.

Практическое применение умной пыли

Потенциал умной пыли в сборе информации об окружающей среде с невероятной детализацией повлияет на множество вещей. Это как умноженная на миллиарды технология Интернета вещей (IoT). Вот лишь несколько примеров практического применения умной пыли.

  • Тщательное наблюдение за с/х культурами, чтобы определить потребность в поливе, удобрении и борьбе с насекомыми.
  • Мониторинг оборудования, чтобы вовремя его обслуживать.
  • Определение недостатков и коррозии еще до сбоя системы.
  • Наблюдение за людьми и продуктами в целях безопасности.
  • Измерение всего, что можно измерить. И практически везде.
  • Контроль доставки продуктов от производителя до магазина, включая транспортировку любым способом.
  • Применение в медицине: диагностика без хирургического вмешательства. А еще — контроль устройств, которые помогают людям с ограниченными физическими возможностями взаимодействовать с инструментами, что помогают им жить самостоятельно.
  • Исследователи Калифорнийского университета в Беркли опубликовали статью о потенциале умной пыли. Если ее имплантировать так, чтобы она “припорошила” мозг, то можно получить обратную связь о его функциональности.

Чем опасна умная пыль

Все еще остаются проблемы, которые тормозят массовое применение умной пыли. Вот несколько из них.

Конфиденциальность

Эксперты обеспокоены проблемами конфиденциальности MEMS. Смарт устройства могут записать все, на что их запрограммировали. Из-за миниатюрного размера их сложно обнаружить. И тут можно включить фантазию на тему: что если умная пыль попадет в чужие руки…

Контроль

Миллиарды умных пылинок легко разлетаются над выбранной областью. А собрать их воедино при необходимости — задание не из легких.

Учитывая размер, обнаружить пылинки сложно. А все частицы из “распорошенных” — и подавно. К тому же, даже небольшое количество “невыявленных элементов” продолжит “сливать” информацию.

Стоимость

Это новая технология. Поэтому затраты на ее внедрение очень высоки. Пока стоимость не снизится, умная пыль будет недоступна для многих.

Умная пыль уничтожить мир?

Технология MEMS может быть разрушительной для экономики и мира в целом. Так считают те, кто с 1992 года занимался ее разработкой. Эту же мысль поддерживают крупные компании, которые инвестировали в исследования. Среди них — General Electric, Cargill, IBM, Cisco Systems.

Поэтому важно убрать все “опасные” моменты, чем “распорошить” повсеместно умную пыль.

Микроробот - это механизм, размер которого исчисляется миллиметрами, а то и микронами. Одиночный микроробот, как и один муравей, практически ни на что не способен. Однако множество их, собранных в одном месте, становится похожим на семью из миллиардов тропических муравьев, уничтожающих все живое на своем пути. Объединенная сила множества слабых существ может воплотить в жизнь концепцию "умной пыли", которая, строго говоря, позаимствована из повести Станислава Лема "Непобедимый" и еще недавно рассматривалась как дело далекого будущего (см. "Наука и жизнь" № 11, 1998 г.). Один из возможных способов ее применения, который придумали американские военные, - поражение танков противника: облако микророботов, несущих заряд, окутывает бронированную машину и взрывается. Впрочем, у роботов могут быть и мирные задачи, например исследование околоземного пространства с помощью стаек микроспутников.

При этом возникает сложная проблема: как одновременно управлять множеством механизмов. "Представим себе, что десятками тысяч роботов нужно управлять из одного центра, - говорит доктор технических наук Игорь Каляев из НИИ многопроцессорных вычислительных систем при Таганрогском государственном радиотехническом институте. - Там должен стоять мощный сверхкомпьютер, способный отследить положение каждого робота и дать ему инструкцию. Это требует огромных затрат времени, а кроме того, весьма небезопасно: управляющий центр может выйти из строя. Значительно проще дать возможность каждому роботу принимать самостоятельные решения и координировать свои действия с действиями соседей".

Исследователи из Таганрога построили математическую модель, позволяющую понять, как следует управлять облаками микророботов с тем, чтобы они одновременно двигались к разным целям. Эта работа была доложена на Международном симпозиуме по микророботам, микромашинам и микросистемам, который проходил в Москве, в Институте проблем механики РАН 24-25 апреля этого года.

Алгоритм действия, придуманный отечественными исследователями, таков. Сначала роботы образуют единое облако. Ему сообщают координаты целей. Каждый робот, зная свои координаты и координаты целей, выбирает ближайшую цель и принимает решение, стоит ли к ней двигаться. Для этого он узнает, сколько роботов уже направилось к этой цели. Если их число вполне достаточно, он начинает искать другую цель или остается в резерве. Если - нет, принимает решение об атаке, о чем и оповещает соседей. Так облако весьма быстро распадается на фрагменты, кластеры, которые перемещаются к своим целям.

"Процесс кластеризации необходимо периодически возобновлять, - уточняет Игорь Каляев. - Это нужно, чтобы учесть изменения оперативной обстановки. Например, если какой-то робот выбыл из игры, облако должно об этом узнать и быстро заменить его резервным. Точно так же нужно учитывать изменения координат цели - она может слишком сильно удалиться от каких-то роботов кластера. Значит, нужно будет к нему подтянуть дополнительные силы".

Компьютерное моделирование показало, что предложенный подход очень эффективен, а алгоритм принятия решений микророботами столь прост, что его легко воплотить в маленьких электронных мозгах этих миниатюрных созданий. Кроме того, вся процедура оказывается чрезвычайно гибкой, способной быстро учитывать и потери микророботов, и изменения в поведении целей.

Сегодня, в начале XXI века, интервал времени между созданием теории и ее воплощением в жизнь резко сократился. И возможно, что уже через несколько лет мы узнаем о первых облаках "умной пыли", которые, следует надеяться, станут выполнять только мирные задачи.

По материалам агентства "Информ-наука".

Умная пыль – сеть из беспроводных микроэлектромеханических устройств, называемых mote (с англ. «пылинка») или «мот» в русском варианте.

Моты регистрируют уровень освещенности, вибрации, температуру, химический состав окружающей среды и самоорганизуются в сеть для обмена сообщениями.

2. История создания и развития

Исследования сетей, состоящих из большого количества крохотных устройств, началось в конце 20 века в DARPA для военных целей. Термин «умная пыль» (с англ. «Smart Dust») был предложен учеными из Калифорнийского университета Беркли в 1997 году. Ключевая концепция использования умной пыли состоит в том, чтобы развернуть сети из множества миниатюрных устройств (мотов) в помещениях и на открытом пространстве для сбора различных данных и анализа состояния окружающей среды.

Сегодня главной компанией занимающейся разработкой и исследованиями в области умной пыли является Dust Networks. Ей помогает компания Cisco. Вопрос о стандартах взаимодействия мотов в настоящий момент является открытым, активно разрабатываются и тестируются протоколы связи для таких сетей.

В будущем планируется уменьшать размер устройств, в идеале достичь размеров, не превышающих размеров частички пыли (отсюда и название «умная пыль»).

3. Технические характеристики

Размер устройств без антенны не превышает нескольких миллиметров. Обычно изготавливаются на кремниевой подложке. Более дешевым вариантом являются моты, изготовленные из полимеров, однако такие устройства имеют меньший срок службы. Работают данные устройства от микробатареек в среднем в течение 10 лет.

Между собой моты могут общаться при помощи радиоволн малой мощности или с помощью оптических волн. И тот и другой способ накладывает некоторые ограничения на область применения мотов. Самым распространенными алгоритмами самоорганизации на сегодняшний день являются биоподобные, в частности роевой (копирует поведение роя пчёл, муравьев). Связь с сетью общего пользования осуществляется через специальные шлюзы.

В среднем к одному моту подключается до 10 миниатюрных датчиков в зависимости от задач, возложенных на сеть. Одной из модели построения сети является распределение обязанностей. Т.е. все моты разбиваются на группы с разными функциональными возможностями и могут привлекать друг друга в зависимости от задачи и конкретной ситуации.

В качестве операционной системы на устройствах умной пыли используется встроенная TinyOS. TinyOS написана на языке программирования nesC и представлена набором взаимодействующих задач и процессов.

4. Кейсы применения

В военной сфере умную пыль применяют для разведки вражеской местности, атаки на военные объекты (например, рой мотов окружает БПЛА и, например, самовоспламеняется или мешает ориентированию в пространстве). Множество применений и в гражданской области. Самое распространенное мониторинг труднодоступной среды (например, на вращающихся элементах, шахтах и др.).

Организация умных помещений: моты контролируют микроклимат в помещении, осуществляют мониторинг движения людей и животных. В будущем с появлением новых технических возможностей применение умной пыли для мониторинга состояния внутренних органов человека, ликвидации поврежденных или зараженных клеток и т.д. Также умная пыль может использоваться в космическом пространстве, помогая исследовать новые планеты.

Облачный ИИ, платформа как услуга, данные как услуга. Хотя машинное обучение не новая технология, его внедрение через платформы изменит миллионы, может, даже миллиарды жизней так же, как когда-то их изменили облачные технологии.

Дополненная, искусственная, виртуальная реальности. Некоторые из этих терминов используются как равнозначные, но на самом деле они обозначают совершенно разные вещи: вокруг виртуальной реальности было много хайпа, но было создано совсем немного конкретных приложений, дополненная реальность показывает хороший потенциал в качестве расширения для цифровых платформ: каждая стена может стать экраном.

Кроме того, представьте сборку мебели IKEA с помощью схем и инструкций, которые появляются внутри очков. Или можно будет находить закономерности в реальном мире с помощью AR и машинного обучения. Или найти конкретного человека в толпе за секунды. И этот список можно продолжать.

Беспилотные автомобили. Если изменить автомобиль, то поменяется и проектирование городов. Всё очень просто.

Однако современные беспилотные автомобили не способны ездить безопасно без посторонней помощи (согласно этому небольшому руководству). Чтобы добиться более высокого уровня автоматизации, требуется дальнейшее усовершенствование в считывании данных, обработке изображений и создании карт - а также расширение возможностей ИИ и компьютерных систем.

В таком случае нам надо сосредоточиться на полуавтономных машинах, которые можно использовать, чтобы перевозить товары быстрее и точнее. Они могли бы уменьшить количество аварий и пробок на дорогах, даже замедлить процесс урбанизации, потому что у людей появится возможность использовать время поездки для более важных когнитивных процессов, а значит, им не обязательно будет жить в центре городов.

Ну а пока я по-прежнему буду пользоваться переполненным метро.

«Умный» дом. Эти изменения уже происходят и скоро будут повсеместно внедрены на Западе. Я говорю о лампочках, которые можно контролировать со смартфона, о холодильниках, которые за вас смогут заказывать молоко или другие продукты, когда они закончатся, и о саморегулирующихся термостатах.

5G. Хотя технологии 5G ещё придётся столкнуться со множеством проблем, скорее всего, это платформа, на которой будет основано много вещей из будущего. Мы здесь говорим о десятикратном увеличении скорости интернета, десятикратном увеличении плотности покрытия сети и стократном увеличении эффективности использования сети - всё это потребуется для обеспечения работы всего, о чём писалось выше и будет написано ниже.

Сверхмалая задержка передачи данных и доступность множества данных гарантирует конкурентные преимущества тем, кто готов с этим работать. Большинство руководителей организаций должны знать или задавать вопросы о том, как развиваются местные сети. Да здравствует 5G.

Квантовые компьютеры. Квантовые компьютеры будут на такие расчёты, которые просто немыслимы для современных машин, но мы ещё не поняли, что надо сделать, чтобы добиться таких мощностей.

Одна наиболее вероятная и привлекательная возможность: точное изображение молекул, которое перевернёт производство, химию и медицину современности. И хотя квантовые компьютеры общего назначения вряд ли будут созданы, сама технология обладает серьёзным потенциалом в узких конкретных областях.

Расширение человеческих способностей. Веселье! Азарт! Экзоскелеты! Уже сейчас существует бесчисленное множество способов возможности наших тел, от некоторых из них можно только поморщиться, вроде имплантации чипа под кожу, другие - очень простые, например, пристегнуть компьютеризированный бандаж на колено.

С одной стороны, у этой технологии есть потенциал улучшить человеческое тело и разум, с другой - возникают этические и юридические вопросы, поэтому внедрение некоторых из этих инструментов пока обсуждается.

Интернет вещей, граничные вычисления, интеллектуальная граница. По большей части обработка данных у устройств, подключаемых к интернету, происходит в облаке. Пересылка данных от устройства к центральному серверу и обратно может занимать несколько секунд, это слишком долго.

Поэтому если сделать так, чтобы объекты могли обрабатывать данные самостоятельно (в «границах» экосистемы), станет возможным создание автономных транспортных средств. Эта технология также способна сделать бесценный вклад в медицину, производство и многие другие сферы.

Но как это обстоит и с другими разработками, описанными как выше, так и ниже, сначала надо подтянуть аппаратную часть, только потом мы сможем реализовать все эти идеи (смотрите “Are ASIC Chips The Future Of AI?”).

Когда «умных» вещей станет больше, произойдёт сдвиг от обособленных «умных» объектов к группам взаимодействующих «умных» объектов. При такой модели множество устройств будет работать вместе либо независимо, либо с участием человека. Технология используется военными, которые изучают применение групп дронов для атак или защиты военных объектов. Но она развилась бы сильнее благодаря сотням потенциальных вариантов использования в гражданских целях.

Микрочипы, биочипы. Сейчас основная идея применения микрочипов - отслеживание биометрических данных на работе в рамках экосистемы «умного» рабочего пространства . И хотя пока ничего особенно интересного тут не придумано, технология уже позволяет устанавливать личность сотрудников и платить за ланч или кофе.

Если только вдруг все не согласятся ежедневно на работе отслеживать давление, эта технология так и останется совершенно безобидной в ближайшем будущем. На поверхности чипа расположена группа молекулярных сенсоров, которая может анализировать биологические и химические элементы. А значит, эти чипы будут способны обнаруживать серьёзные заболевания на ранней стадии. А это приводит нас к следующему пункту.

Нанороботы. Если вам нужны ещё более мелкие устройства, чем микрочипы, обратите внимание на нанороботов. Они находятся в стадии исследований и разработки и являются крошечными сенсорами.

Первым полезным применением этих наноустройств станет наномедицина. Например, эти биологические машины можно использовать для определения и уничтожения раковых клеток или доставки лекарств. Другое их потенциальное применение - обнаружение токсинов и определение их концентрации в окружающей среде.

Анализ генетической предрасположенности. Нет, пока я не имею в виду «Гаттаку ». Но мы близки к этому: учёные уже могут с помощью генома предсказывать вероятность сердечных заболеваний или рака груди, даже IQ (мой, например, находится в промежутке между 75 и 135, согласно ненаучным тестам на BuzzFeed). Поэтому такой анализ ДНК может существенно улучшить здоровье людей, даже несмотря на опасность генетической дискриминации .

Например, если у женщины выше риск развития рака груди, она должна иметь возможность чаще делать маммографию, а те женщины, у которых риск ниже, - могут делать их реже. Так можно засечь больше реальных случаев заболевания раком и отсеять небольшое количество случаев ложной тревоги. В итоге улучшится качество лечения, а медицинские страховые взносы снизятся.

Возможно, это повлияет на развитие персонализированной медицины, хотя организация такой задачи в условиях текущего политического климата, скорее всего, станет финансовой и организационной катастрофой.

CRISPR. Даже если будущее из «Гаттаки» не наступит, простое изменение некоторых генов для лечения конкретного человека может легко нам испортить апокалиптическое будущее, к которому движется человечество. У методики редактирования генома CRISPR-Cas есть множество потенциальных вариантов применения, включая медицину и улучшение качества семенного материала сельскохозяйственных культур.

Не так весело, если человечество будет модифицировать геном вирусов для создания новых болезней.

В любом случае я с нетерпением жду те времена, когда каждый человек будет выглядеть как что-то среднее между Томом Хиддлстоном и Идрисом Эльбой.

3D-печать металлом. Возможно, 3D-печать это уже прошлое (хотя идеи, стоящие за этой технологией, только недавно стали более реалистичными), но нам ещё предстоит в полной мере увидеть возможности этой технологии с применением новых материалов. Когда станет возможной работа с различными металлами , мы сможем создавать более лёгкие, прочные и сложные объекты, например сложные или индивидуальные механические детали (например, для кастомизированных автомобильных двигателей). Однако этот процесс трудно освоить.

Устройства, носимые в ушах. Будущее за ушами! И хотя голосовые платформы могут стать следующим значительным явлением, я бы не стал сбрасывать со счетов уши. «Умные» наушники вполне могут вскоре стать повседневными советниками по всем вопросам, а может, даже будут подсказывать (бывало, что вы никак не могли запомнить имя того парня?).

Подумайте об этой технологии с практичной стороны: уши находятся близко ко рту, способны к многозадачности, работают, когда вы спите, и лучше смотрятся с модными аксессуарами, чем рот или глаза. И я уж не говорю о почти моментальном переводе .

Такими темпами Amazon скоро будет отправлять нам рекламу сиропа от кашля после того, как услышит кашель.

Безуглеродный природный газ. Способность эффективно и дёшево сохранять углерод, высвобождаемый при сгорании природного газа. Вот и всё. Без шуток и уловок. Если вы хотите нормальной жизни для своих праправнуков, сконцентрируйтесь на зелёных технологиях .

Малопонятные, но очень интересные технологии

«Умная» пыль - это крошечные (0,15 x 0,15 мм) сенсоры, которые могут собирать огромное количество информации с обширных территорий, не вмешиваясь при этом в экосистему. Например, они способны обнаруживать коррозию в изнашивающихся трубах на фабриках прежде, чем те начнут протекать (или анализировать состав питьевой воды, большой привет городу Флинт), отслеживать изменение почвы в городах, или даже недоступные территории, вне зависимости от их размера.

Одна из проблем этой технологии, которую активно обсуждают, это экологический вред, который могут нанести сенсоры, а также неэтичные варианты их использования. Кроме того, существует вопрос о том, насколько эффективными могут быть собранные данные в сравнении со снимками со спутников.

4D-печать. Сам термин 4D-печать может запутать: я не намекаю на то, что человечество будет способно создавать и получать доступ к ещё одному измерению (только Рубику это удалось). Проще говоря, продукт 4D-печати - это объект 3D-печати, который сможет менять свойства, если на него будет воздействовать определённый стимул (например, погружение под воду, нагревание, встряска, перемешивание).

Варианты применения всё ещё обсуждаются, но благодаря этой технологии многие области промышленности могли бы стать более самодостаточными, а некоторые продукты - имели бы более практическое применение.

Как круто было бы иметь одежду и обувь, которая могла бы изменять форму и функцию в ответ на изменения окружающей среды?

Нейроморфные устройства. А это я называю настоящей научной фантастикой. Нейроморфная инженерия берёт немного от биологии, физики, математики, компьютерных наук и электронной инженерии. Цель этой области исследования - создание устройств, которые копируют ответ нейронов на сенсорный импульс.

Мы не знаем, как эта идея может быть использована, но её изучение должно помочь теоретическим исследованиям ИИ.

Цифровой двойник. Технология цифрового двойника включает в себя разработки в области искусственного интеллекта, машинного обучения и аналитики программного обеспечения для создания цифровой копии физических ресурсов, которая способна изменяться, когда меняется физическая копия, а значит, может предоставить огромное количество информации о жизненном цикле объекта.

Предполагается, что к 2020 году будет около 21 миллиарда подключенных к интернету датчиков, поэтому цифровые двойники будут существовать у миллиардов объектов уже в ближайшем будущем, хотя бы чтобы потенциально сэкономить миллиарды долларов на поддержке и ремонте. Благодаря этому станет возможна оптимизация работы интернета вещей.

Все вышеперечисленное - это круто, но представьте, насколько круче было бы, если бы вместо объектов мы могли бы делать цифровых двойников людей, чтобы в реальном времени отслеживать течение болезни или жизнь целых городов!

Более подробную информацию увидим к 2050 году.

Трёхмерные и аэрозольные экраны. Станут возможны трёхмерные экраны - голограммы. Реклама с их применением может быть либо очень развлекательной, либо ужасной из-за потенциальной нереалистичности (это легко можно представить, посмотрев фильм «Бегущий по лезвию 2049»).

То же самое можно сказать об индустрии, которая захочет применять эту технологию. Я тоже сомневаюсь в важности этой технологии: компьютеры должны были убить бумагу, а я всё ещё распечатываю каждую презентацию, чтобы прочесть её.

Я вообще считаю, что голограмма не может быть самостоятельной технологией, она может только создавать шумиху вокруг других более интересных технологий (таких как адаптивные проекторы).

Нейрокомпьютерный интерфейс иногда называют: нейро-контролируемый интерфейс, мозговой интерфейс, прямой нейронный интерфейс или интерфейс «мозг-компьютер» - это прямой канал связи между мозгом и внешним устройством. Звучит очень круто и футуристично, но вы, наверное, уже видели эту технологию в работе, например, в протезировании.

А вот постоянный доступ мозга к интернету может перевернуть технологию. Кроме возможных социологических, этических и финансовых проблем, меня ещё интересуют теологические вопросы: если у каждого будет доступ ко всей полноте человеческих знаний в любой момент времени, каждое человеческое существо будет богом. А если все боги, то никто не бог. Это успокаивающая мысль.

Доказательство с нулевым разглашением (или краткие неинтерактивные аргументы знания с нулевым разглашением). Слышали о приватности? Специалисты в области вычислительной техники совершенствуют криптографические инструменты для возможности доказать что-то без раскрытия информации, лежащей в основе доказательства.

Звучит невероятно, но не так уж и невозможно, если разобраться в концепте.

Однако технология медленная и требует сложных расчётов. Для неё также требуется так называемый «доверительный протокол», для создания криптографического ключа, который может скомпрометировать всю систему, если попадёт не в те руки. Но исследователи ищут альтернативы, которые будут использовать доказательство с нулевым разглашением более эффективно, не требуя такого ключа.

Летающие беспилотные автомобили. Эту технологию легко представить, потому что она - часть коллективного воображения уже десятки, если не сотни лет. Вполне может быть, что ожидание водителя Uber или Lyft на обочине однажды станет старомодным способом передвижения по городу, как бы глупо сейчас ни звучали идеи о летающих автомобилях.

Мы уже боремся с тем, чтобы люди прекратили нападать на классические беспилотные автомобили, так что пока в этой области нет ощутимых результатов.

«Умные» роботы и автономные мобильные роботы. Эта тема всегда была неотъемлемой частью научной фантастики по очевидным причинам: если соединить роботостроение с общим искусственным интеллектом, то можно допустить мысль о том, что цифровой мир может стать физическим.

Но для начала нам нужно улучшить область роботостроения (пока роботы не очень хорошо двигаются) и создать новую область исследований искусственного интеллекта. Кроме того, автономным мобильным роботам потребуются ёмкие батареи, а значит, требуются дополнительные исследования области литиево-кремниевых технологий. Не может же Илон Маск забрать себе всю славу?

На EdX сейчас есть бесплатные курсы по базовым концептам создания автономных роботов.

Биотехнологии, искусственно выращенные и искусственные ткани. Эти биохаки делятся на четыре категории, которые определят заново, что значит быть человеком: технологичное улучшение тела, нутригеномика, экспериментальная биология и биохакинг грайндеров.

  • Технологичное улучшение тела - использование различных инструментов для улучшения человеческих конечностей (а именно: дополненное зрение, конечности, напечатанные на 3D-принтерах или искусственные ткани).
  • Нутригеномика - это изучение влияния пищевых продуктов и их составных частей на экспрессию генов. Также в этой области исследуют, можно использовать те или иные продукты, чтобы замедлить старение, рак или бороться с ожирением.
  • Экспериментальная биология - экспериментальная наука (что следует из её названия), и я её не особенно понимаю.
  • И наконец, грайндеры - люди, которые с помощью самодельных кибернетических устройств или через введение в организм химических средств пытаются улучшить или изменить функциональность своих тел. Оказывается, принцип «сделай сам» может быть применим и к будущему. Спасибо IKEA.

В марте прошлого года программа AlphaGo, разработанная Google DeepMind, одержала победу над одним из лучших мастеров го в мире - Ли Седолем (Lee Sedol). Эта серия игр стала показателем того, на что способны нейронные сети. И они находят применение в других (менее глобальных) приложениях, например программах для обнаружения вредоносного ПО или перевода текста на изображениях.

Ожидается, что в ближайшее время стоимость рынка программного обеспечения, использующего возможности глубокого обучения, превысит 1 миллиард долларов. Поэтому исследователи занимаются проектированием специальных чипов, способных справиться с такими приложениями.

Среди них выделяются Google, Nvidia, Qualcomm и др. Но сегодня мы бы хотели поговорить о разработке ученых Мичиганского университета - проекте Michigan Micro Mote - компьютере объемом в один кубический миллиметр.

Генеральный директор SoftBank Масаёси Сон (Masayoshi Son) предположил , что к 2035 году количество гаджетов Интернета вещей достигнет 1 триллиона. Однако у современных устройств, например камер, микрофонов, замков, термостатов, есть недостаток - они не способны анализировать информацию самостоятельно, потому постоянно передают её в облако, затрачивая энергию.

Исследователи из Мичиганского университета поставили перед собой задачу решить эту проблему и сделать умные и маленькие компьютеры с сенсорами для IoT.

«Сложно представить, сколько данных сгенерирует триллион устройств, - говорит профессор Мичиганского университета Дэвид Блааув (David Blaauw). - Создав маленькие энергоэффективные сенсоры, способные проводить анализ «на лету», мы сделаем наше окружение более безопасным и сэкономим электричество»

Именно проблему энергопотребления должен решить компьютер Michigan Micro Mote, который настолько маленький, что сопоставим размерами с рисовым зернышком.

Тем не менее он является полнофункциональной вычислительной системой, способной действовать как умный датчик. Например, его используют для мониторинга внутриглазного давления.

Удивительно маломощный

В основе решения лежит крошечный процессор Phoenix с очень низким энергопотреблением. Процессор Phoenix разделен на ядро и периферию. Ядро состоит из 8-битного CPU, 52-х 40-битных ЗУ с произвольным доступом для данных (DMEM), 64-х 10-битных ЗУ с произвольным доступом (IMEM) и 64-х 10-битных ПЗУ (IROM) для команд, а также блока управления электропитанием.

Периферия включает в себя контрольный таймер и датчик температуры, но к их числу можно добавить еще 8 сенсоров, в зависимости от требуемого функционала.

Схема процессора Phoenix ()

Ядро и периферия взаимодействуют с помощью системной шины, использующей простой асинхронный протокол. Большую часть времени процессор Phoenix проводит в режиме готовности. Контрольный таймер, который является осциллятором с низким потреблением тока, «будит» процессор и запускает процесс обработки и сохранения показаний температурного датчика. После выполнения задачи, процессор возвращается в режим готовности и ожидает следующей команды - такой подход позволяет серьезно сократить энергопотребление.

CPU и другие логические модули могут быть отключены от источников питания, когда их услуги не требуются, а вот память (IMEM и DMEM) - нет, поскольку она должна хранить записанные в неё данные. Поэтому модули SRAM остаются главными потребителями энергии. По этой причине разработчики применяют методики, призванные снизить утечки тока, например высокий уровень напряжения на входах транзисторов. С той же целью была увеличена длительность стробирующего импульса.

Архитектура памяти данных (DMEM) с ячейкой SRAM ()

Чтобы еще сильнее снизить энергопотребление, DMEM работает с так называемым списком свободной памяти. Этот список, управляемый CPU, содержит информацию об используемых строках в памяти DMEM. DMEM имеет 26 переключателей (каждый подключен к 2 строкам), которые выборочно отключают подачу тока в режиме готовности, учитывая состояние списка свободной памяти.

Разработчики также оптимизировали работу CPU с IMEM и DMEM. Для работы с IMEM используется минимальный набор базовых команд. Длина команды ограничена 10 битами, при этом популярные операции используют гибкие способы адресации, а менее популярные - неявные операнды. Также в процессоре имеется аппаратная поддержка сжатия, чтобы максимизировать емкость памяти.

Отображение адресов виртуальной памяти в DMEM выполняется с использованием фиксированного алгоритма Хаффмана. Сама DMEM разделена на статические и динамически определяемые блоки. Каждые 16 байт виртуальной памяти получают одну строку статического раздела. Если запись в память вызывает переполнение, избыток переносится в динамический раздел по указателю.

Схема температурного датчика ()

Что касается встроенного температурного датчика, то его схема представлена на рисунке выше. Температуронезависимый источник тока (Iref) и источник тока, показания которого меняются согласно абсолютной температуре (Iptat), подключены к кольцевому генератору, переводящему температурную информацию в импульсы. Затем эти сигналы поступают на суммирующий счетчик, генерирующий цифровые данные. Поскольку значение температурного датчика сохранять надолго не требуется, он отключается во время простоев, чтобы дополнительно сэкономить энергию.

В своей работе ученые провели тестирование процессора Phoenix и установили, что он потребляет 297 нВт в активном режиме и всего 29,6 пВт в режиме готовности.

Из чего сделан «бутерброд»

Помимо процессора, Michigan Micro Mote имеет несколько других «слоев», выполняющих свои функции. Одним из них являются солнечные панели - солнечная батарея площадью 1 квадратный миллиметр способна производить 20 нВт мощности.

Разрез Michigan Micro Mote ()

Помимо солнечных батарей, устройство состоит из управляющего модуля, радиомодуля, интерфейса сенсорной системы, самого процессора, батареи и элемента регулирования мощности.

Слои общаются между собой с помощью специально разработанного универсального интерфейса, названного MBus. При этом ученые могут просто заменить один из слоев на другой, реализовав новый тип следящего устройства. Такой дизайн значительно снижает стоимость производства.

Путь в микробудущее

«Сейчас мы работаем над улучшением технологии обмена сообщениями между компьютерами, - говорит Блааув. - Пока что нам удалось достигнуть расстояния в 20 метров. Это серьезное улучшение, поскольку первые версии устройства могли передавать информацию лишь на 50 сантиметров»

Возможности технологии ученые из Мичигана продемонстрировали на конференции ISSCC.

Камнями преткновения к расширению зоны покрытия остаются размер антенны и необходимость увеличения мощности для передачи информации на большие расстояния, что сказывается на энергопотреблении.

Исследователи предпринимают и другие шаги к улучшению микрокомпьютера. Например, они постоянно совершенствуют память устройства - предыдущие поколения Micro Mote использовали лишь 8 килобайт SRAM, что делало их непригодными для обработки звука и видео. Поэтому команда ученых снабдила новые компьютеры флеш-памятью в 1 мегабайт.

Более того, одно из устройств Micro Mote, представленных на ISSCC, имело на борту процессор для глубокого обучения. Микрогаджет оказался способен управлять нейронной сетью, потребляя при этом всего 288 мкВт. Обычно такие задачи требуют больших банков памяти и вычислительных мощностей, предоставляемых современными GPU.

Блааув говорит, что их стартап CubeWorks уже занимается прототипированием устройств и исследованием рынков. Ученые надеются, что через 2 года появятся камеры наблюдения, способные вычислить разыскиваемого правонарушителя прямо среди проходящих мимо людей, и другие умные устройства из мира IoT.



Понравилась статья? Поделиться с друзьями: