Системы охлаждения ПК (персонального компьютера). Выбираем систему охлаждения ЦОДа: фреон или вода

Оверклокинг - в одном этом слове заключено очень многое. Под ним можно подразумевать увеличение производительности для повседневного использования, кратковременное максимально возможное увеличение быстродействия, бенчмаркинг, улучшение температурных показателей комплектующих и многое другое. Тенденция такова, что производители (имеются в виду производители аксессуаров для оверклокеров) стараются выпускать для каждого из направлений узкоспециализированные комплектующие. Разница наиболее заметна в системах охлаждения: воздушные, водяные, с элементами Пельтье. При этом истинно универсальных продуктов, которые могли бы использоваться одновременно, например, как для повседневного использования, так и для бенчмаркинга, очень мало. Впрочем, о причинах апгрейда компьютерного охлаждения я еще скажу пару слов чуть позже.

Почему фреонка?

Для примера возьмем один из наиболее универсальных продуктов на сегодня - Scythe Infinity . Это огромных размеров суперкулер, совмещающий в себе как достаточную производительность в пассивном режиме, так и рекордные показатели при должном обдуве всей конструкции с помощью нескольких 120-мм вентиляторов. Но из-за их использования неизбежно возникает шум и в кулере накапливается много пыли. Допустим, мы приобрели систему водяного охлаждения. При грамотном подходе к выбору комплектующих от СВО можно получить намного большую эффективность с минимальным уровнем шума. Пыль на радиаторе не так остро сказывается на тепловых показателях процессоров и не оседает непосредственно на печатных платах компонентов, оказывая влияние на стабильность. Обычный пользователь годами может довольствоваться СВО, но так как в последнее время бенчмаркинг набирает популярность, наверняка среднестатистический оверклокер тоже попадет под это влияние.

Но проблема в том, что при экстремальном разгоне на водяном охлаждении получить более-менее приличные результаты невозможно. Конечно, выходы для уменьшения температуры на теплообменниках есть - можно добавить в расширительный бачок сухого льда или включить компоненты СВО в состав ватерчиллера, установить модуль Пельтье. Но практически все современные ватерблоки не приспособлены для использования с температурой хладагента ниже нуля. В силу популярности моддинга в них повсеместно используется резина, оргстекло и пластмасса. Эти материалы после нескольких бенч-сессий дают течь, трескаются. Допустим, вы заменили их более простыми и надежными (SilentChill, Waterworker - примеров много), с трудом достали силиконовые шланги, которые, в отличие от популярных пищевых трубок, не становятся полностью "деревянными". Преодолена еще одна ступень усовершенствования системы охлаждения ПК, но и у нее есть свои очевидные минусы, самый значительный из которых - относительно большие теплопритоки. В отличие от DirectDie-фреонок, хладагент в ватерчиллерах преодолевает долгий путь, неизбежно теряя холод. Из-за этого обладатель такого охлаждения вполне может осознать "нерациаонльность" его использования. Рассчитывая получить максимальную производительность, он получает лишь множество мелких, неприятных в повседневном использовании проблем. После этого остается только пользоваться системой, именуемой в простонародье фреонкой.

Принцип ее работы - очень объемный материал, достойный отдельной статьи. Если вкратце - она работает так же, как холодильник. Холод образуется вследствие того, что компрессор гоняет фреон по контуру. Из компрессора хладагент в газообразном состоянии попадает в конденсатор. Там он превращается в жидкость, после чего проходит через фильтр-осушитель в капилляр, который ведет к испарителю. На этом пути, из-за низкого давления, фреон начинает кипеть при минусовой температуре и по обратной линии попадает в компрессор уже в газообразном состоянии. Вот почему такое название - система фреонового охлаждения на основе фазового перехода. Она является полностью закрытой и не требует обслуживания или какой-либо подстройки. Об остальных плюсах и минусах такой системы и непосредственно об Asetek VapoChill LightSpeed поговорим в процессе обзора.

Цены

Отдельно о неприятном - о ценах. К сожалению, официальный дистрибьютор в Украине только один, а именно компания Nebesa . Используя свое эксклюзивное положение, он доводит цены до 1000 долларов за версию с панелями из полированного алюминия и 1050 долларов за черный цвет корпуса. Теоретически мы должны говорить "спасибо" Asetek за то, что в стандартной комплектации нет покраски, якобы пользователю предоставляется возможность не переплачивать, а приобрести в последующем панели нужного цвета (выбор невелик: черный, красный и синий) в официальном интернет-магазине компании за 140 долларов.

Там же можно купить эти же VapoChill LS по цене 906 и 977 долларов. Но в стоимость не входит доставка. А это 49 долларов и максимум 11 дней ожидания посылки. Непонятным является факт существования отдельных моделей для рынка США. На сайте указано только одно отличие, а именно - рабочее напряжение 115 вольт. При этом они дороже на 229 (198 с черным корпусом) долларов. Неужели за эти немалые деньги разработчики просто переключили тумблер внутри корпуса?!

Изделия от ECT будем считать неконкурентоспособными. Эти модели все еще можно найти в продаже (в основном на барахолках форумов), однако даже флагман Prometeia Mach II GT похвастаться достойными показателями производительности не может.

Нельзя упускать из внимания перспективную бюджетную фреонку OCZ Cryo-Z . Но, судя по заявленной цене в 500 долларов, результаты разгона будут на столь же низком уровне.

Кроме этого существуют отдельные частные изготовители. Продукты, равные по эффективности VapoChill LS, обойдутся в среднем на треть дешевле, но последующее гарантийное обслуживание на протяжении 12 месяцев при этом отсутствует. Если хочется большего - есть шанс найти у энтузиастов каскадные фреонки. На них можно получить около -100 градусов при нагрузке. Но цена самых простых вариантов может достигать 1000 евро и выше.

Осмотр

Заказывая VapoChill LS, мы должны получить относительно большую, красивую коробку белого цвета с логотипом модели. Ее размеры 60x31x40 см, вес около 18 килограмм. Но это не всегда так.

При получении посылки постарайтесь распаковать коробку и проверить боковые панели фреонки на наличие вмятин, особенно с левой стороны, где компрессор установлен практически вплотную. Если видимых повреждений нет - любые другие "поломки" можно будет списать на производителя и включать агрегат для проверки нет особого смысла.

В моем случае в магазине не удосужились закрепить компрессор крепежными винтами после тестовой проверки на работоспособность. Если до пункта назначения далеко и у вас нет машины - лучше сразу позаботиться о такси. Не советую класть коробку в багажник - только на руки, в салон. Наши дороги даже при минимальной скорости приводят к встряхиванию внутренностей компрессора, что может вывести его из строя. Также желательно не переворачивать агрегат и держать его горизонтально. Если уж пришлось это сделать, и вы не уверены в правильности транспортировки до места получения - производитель рекомендует поставить систему на 12 часов в нормальное для нее положение. За это время теоретически все масло из трубок и обмотки должно скопиться в картере. Извлечение VapoChill LS без разрезания коробки в одиночку практически невозможно, ведь блоки из полистирола очень плотно сидят внутри. Кроме непосредственно фреонки в варианте с креплением для 775-го сокета мы должны найти такие комплектующие:

  • Руководство пользователя
  • Брошюра по установке испарителя
  • Прижимная пластина
  • Тюбик диэлектрической субстанции для предотвращения коррозии процессора и сокета
  • Специальная палочка для нанесения вышеуказанной субстанции
  • Двухжильный провод для включения материнской платы
  • Два USB-кабеля
  • Chill Сontrol - плата, по сути "мозг" системы
  • Три прокладки: две над сокетом и вокруг него, другая для приклеивания к прижимной пластине
  • Два нагревательных элемента
  • Чертеж для вырезания отверстия под гофру в корпусе
  • Корпус для испарителя с внутренним изолятором из твердого материала
  • 4 бочонка, 4 пружины, 8 пластмассовых шайб, 4 пластмассовых колечка и, как вариант, 4 болта, которые используются для фиксации компрессора

Также существует вариант поставки с предустановленным китом для сокетов 754, 940, 939 и 478.

Осмотрим фреонку.

Собственно размеры корпуса - 49x21x21 см. Как мы можем видеть, декоративные алюминиевые панели выполнены в стиле корпусов Lian-Li прошлого поколения, а именно моделей: PC-60, PC-61, PC-65, PC-7, PC-12, PC-37, PC-82, PC-601, PC-0700, PC-0716a, PC-0716s, PC-6077, PC-6085A. Производитель рекомендует использовать именно эти корпуса, так как они лучше подходят с эстетической точки зрения. Проблема состоит в том, что они довольно редкие гости в отечественных магазинах. Толщина панелей – 1,5 мм. Заменить их вручную очень просто - все легко снимается с помощью шестигранника. Если захотите снять панели - будьте бдительны! На них наклеены стикеры, в случае деформации которых (они очень легко рвутся) вы теряете гарантию. Если такое произошло, по советам официальных лиц, вам необходимо отправить письмо непосредственно представителям Asetek или лучше прямо на форуме оставить пост с объяснением того, что заставило вас снять панели - и, возможно, тогда все будет хорошо.

Одна расположена сразу возле места выхода гофры, а другая - в начале левой панели посередине. Если первую можно отклеить без труда, то чтобы добраться до второй, нужно сначала открутить переднюю панель (осторожно снимайте, иначе можно поцарапать контуры дисплея) и только потом можно пытаться отклеить ее через довольно маленький проем. Также все панели отличаются просто ужасным качеством изготовления - везде заусенцы, с внутренней стороны - линии разметки и грязь. Дно испарителя отполировано хорошо, но не до зеркальной поверхности, да и его ровность также не безупречна.

Синий дисплей имеет регулируемую контрастность и белую подсветку. В выключенном состоянии выводится название "VapoChill LightSpeed by Asetek Inc.", а при работе - температура испарителя. Но последнее можно легко заменить показаниями любого термодатчика или вывести скорость одного из подключенных вентиляторов. Также предусмотрена возможность набора индивидуального текста.

Сверху на корпусе имеются 4 крепежных винта, которые используются для фиксации корпуса компьютера. Для этого требуется высверлить отверстия под них и соответственно под гофру. Вот тут и пригодится чертеж из комплекта. Делать это, конечно, не обязательно - при использовании открытого стенда достаточно лишь разместить поблизости материнскую плату. При этом наверняка возникнут проблемы с проводами из-за их недостаточной длины, короткой гофры.

Переходим к осмотру внутренних компонентов.

Первое, что разочаровало - окалина после пайки на всех трубках. В корпусе трудятся два 120 мм вентилятора Panaflo на выдув, а холодный воздух поступает через сквозные боковые отверстия. При довольно больших размерах лопастей они оказались тихими, в сравнении с турбиной серии Radeon Х1800/1950 от ATI, даже на максимальных оборотах, которые можно выставить с помощью VapoChill Control Panel . В целом вся система при работе издает приличный шум, но к нему можно привыкнуть и он не раздражает.

В данной системе используется компрессор Danfoss FR8.5CL. В отличие от устарелых Vapochill XE и Mach II GT, в которых использовался фреон R404a, VapoChill LS заправлен более эффективным 507-м. Стоковая VapoLS справляется с тепловыделением всех современных процессоров, в том числе и Quad Core. Но по причине неразвитого дизайна испарителя, разработанного небезызвестным Chilly1, конденсатором малой мощности, настройкой на другое тепловыделение, обладатели четырехъядерных процессоров должны довольствоваться ограничениями по разгону в виде 3,6 ГГц на старом степпинге и примерно 4 ГГц на новом. В противном случае из-за постоянного перегрева компрессор может выйти из строя. Чтобы выжать максимум из этих процессоров, достаточно только перенастроить VapoChill LS на нагрузку около 300 Вт, ведь феонка рассчитана всего лишь на 225 Вт - чуть меньше выделяли разогнанные Prescott в 2004 году. Также для улучшения показателей заодно можно сменить конденсатор. Снятие боковых панелей тоже улучшает температурный режим. Для бенчмаркинга очень советую дополнительно использовать кондиционер - результат примерно равен приросту от отключения одного ядра на Conroe +100 МГц.

Установка

Процесс относительно сложный. Интуитивно заставить все работать, скорее всего, не получится. Лучше всего воспользоваться подробным руководством по установке с официального сайта, но и оно имеет несколько недочетов. Стоит отметить, что использование нагревательных элементов при бенчмаркинге неоправданно. Тепловыделение процессоров не дает промораживаться ни сокету, ни изоляции испарителя. Конечно, установить их стоит, ведь отключить все можно и посредством ПО. С открытым стендом будьте бдительны - испаритель надо устанавливать только в одном возможном положении, иначе элементы на материнской плате вокруг сокета будут препятствовать плотному прилеганию изоляции. По рекомендации Asetek, диэлектрическую пасту использовать стоит только на свой страх и риск. Ничего, кроме мнимого чувства безопасности и потери товарного вида материнской платы вы от этого не получите. Вычистить сокет даже при помощи струи сжатого воздуха очень тяжело. Если уж решились на этот шаг - не используйте мягкую палочку из комплекта - ею очень легко повредить хрупкие ножки. Лучше всего это делать пальцем.

Кстати, о Chill Control. Эта маленькая плата не только координирует работу всей системы охлаждения, но и является неплохим реобасом и термометром. Кроме необходимых коннекторов на ней размещено два трехпиновых разъема для вентиляторов, 4 разъема для нагревательных элементов, 5 разъемов для подключения датчиков температуры. Первый, по умолчанию, используется встроенным в испаритель датчиком, и подключение к нему невозможно. Последнее руководство предназначено для версии 2.2, но в комплекте поставки на последних VapoChill LS идет версия 3.2. Большое количество этих деталей идет с браком. Из-за этого пользователь получает полностью неработоспособную систему. О поломке сигнализирует красный светодиод при подключенных кабелях и питании. Для ее установки в комплекте поставки имеется четыре штырька на клейкой субстанции. Они одноразовые, так что переклеивать их с места на место не получится. Хочется отметить потребность в существовании простой кнопки, при которой бы включалась фреонка, но производитель этого не предусмотрел.

Все готово для старта системы. Уже в операционной системе устанавливаем Control Panel. С помощью этой утилиты можно контролировать показатели термодатчиков и скорости вентиляторов. Также можно устанавливать следующие настройки:

  • Нужная температура на испарителе для старта компьютера
  • Температура, при которой срабатывает предупреждение о перегреве
  • Температура, при которой происходит экстренное выключение
  • Скорость вентиляторов
  • Мощность нагревателей

Практика

В технической спецификации на официальном сайте заявлено о -25,5°С при 200 Ваттах нагрузки. В режиме простоя -48°С. На практике каждый юнит будет отличается по производительности. Мне попался экземпляр, способный на -60° в простое. На рабочий режим в 20 градусов ниже нуля агрегат выходит за минуту.

Конечно, опытные люди, основываясь на этом показателе, могут сказать, какие результаты можно получить с тем или иным процессором, но лучше проверить на практике. В наличии имеются два процессора, а именно: Intel Core Duo E6400 (Conroe B2, L630A, 2 Мб кэша второго уровня) и Intel Celeron D 352 (Cedar Mill C1, 5629B) на архитектурах Core и NetBurst соответственно. Оба ядра выполнены по современной 65-нм технологии.

Конфигурация тестового стенда:

  • Материнская плата ASUS Commando
  • Оперативная память Geil GX21GB8500PDC (2х512 Мб Micron D9GCT)
  • Видеокарта Sapphire X1950XT
  • Блок питания FSP FX700-GLN

При использовании материнских плат на основе чипсета Intel P965 советую сделать включение VapoChill LS ручным из-за проблем со старт-стопами. В таком режиме электроника иногда дает сбой и фреонка работает постоянно, не обращая внимания на команды. Выключение в этом случае возможно только посредством обесточивания.

Методика тестирования представляет собой замер температуры процессора, как в номинальном режиме, так и в разгоне, при максимальном тепловыделении. Загрузкой процессоров будет заниматься утилита TAT 2.05. Доверим результирующие показания температуры программе S&M 1.9.0b. Для лучшей достоверности теплораспределитель процессора Celeron D 352 был отполирован. Поверхность Е6400, на удивление, очень ровная. Так как рабочие температуры не превышают -50°С, то будет использоваться термопаста КПТ-8. Для наглядности результаты занесены в сводную таблицу.

Default Разгон
Idle Burn Idle Burn
E6400 @ 2,13 ГГц 1,28 В/4,26 ГГц* -38 (-50) -20 (-43) -7,5 (-37) 39 (-30)
Celeron 352 @ 3,2 ГГц 1,2 В/5,5 ГГц* -42 (-48) -27,5 (-45) -13,5 (-35,4) 32 (-27)
* - использовалось напряжение 1,73 В vcore и 1,55 В vsfb

В скобках указана температура испарителя. Плюсовые температуры в нагрузке, конечно, могут пугать, но ведь это тестовая утилита, а в повседневном использовании подобные нагрузки получить невозможно. Результаты разгона процессоров не менее впечатляющие. Максимальная частота, при которой Е6400 прошел валидацию, составляет 4,45 ГГц , а Celeron D 352 – 6,1 ГГц - практически двукратный прирост частоты. Благодаря Asetek VapoChill LS я добился прохождения SuperPi 1M за 13,23 секунды на первом процессоре и за 23,91 сек. на втором.

Выводы

Плюсы:

  • Лучшая производительность
  • Стилизованный под корпуса Lian-Li внешний вид
  • Полная защита от конденсата
  • Сменные алюминиевые панели

Минусы:

  • Относительно шумная работа
  • Ограниченный разгон процессоров на ядре Kentsfield
  • Увеличенное потребление электроэнергии в сравнении с СВО/кулерами
  • Главным минусом Asetek VapoChill LS является цена

А если посчитать, во что обойдется постройка аналогичной системы фреонового охлаждения? Как минимум месяц на изучение объемного теоретического материала с разных форумов, сайтов. Мало прочитать - нужно все запомнить и осознать. Достойные комплектующие, материалы и инструменты обойдутся уже в 500 долларов. Добавьте к этому нелегкие поиски меди на испаритель и хорошего токаря. Затем долгий и в какой-то мере опасный процесс сборки с последующей настройкой. VapoChill LS - это неплохой выбор для тех, кто желает понять, что такое фреонка на практике - и только после этого принять решение, в каком плане двигаться дальше. Для бенчинга это может быть безболезненный и простой переход на стаканы для DI/LN2 (сухой лед/жидкий азот) или более сложный - постройка своей фреонки с последующей практикой и наработке знаний и умения для каскада. Ну а если Вы просто геймер или активный участник проекта Folding@Home - лучшего варианта не найти. Только с помощью Asetek VapoChill LS можно получить максимальный разгон в сочетании с повседневным использованием.

От редактора (ALT-F13): Так уж получилось, что статью мы смогли опубликовать аж через два месяца после ее написания. За это время автор не сидел, сложа руки, а двигался дальше в сторону более экстремального охлаждения. Сейчас Steff занимается сборкой самодельных phase-change direct-die систем, в просторечии - «фреонок». На момент написания этих строк, он продемонстрировал уже второй вариант своей системы. Впрочем, первый также прекрасно работал. Так что строки, с которых начинается текст этой статьи - «Экстремальными методами охлаждения компьютера я увлёкся совсем недавно, так что это - описание моего первого эксперимента в этой области» можно считать недействительными:)

Экстремальными методами охлаждения компьютера я увлёкся совсем недавно, так что это - описание моего первого эксперимента в этой области.

Водяное охлаждение я использовал на протяжении нескольких лет, но пришёл момент, когда захотелось большего. Можно было конечно купить готовую систему Asetek VapoChill или nVentiv Mach II (экс-Prometeia), но у фреонок есть свои недостатки. Во-первых это цена, во-вторых - способность охлаждать только один элемент системы. Для охлаждения, к примеру, видеокарты пришлось бы покупать еще одно устройство и серьезно заморачиваться с установкой.
Начинать свое знакомство с экстремальным охлаждением с постройки самодельной direct-die системы показалось мне достаточно сложной задачей, поэтому я выбрал другой путь.
Альтернативой direct-die охлаждения являются ватерчиллеры, то есть системы на базе водяного охлаждения с эффективным охлаждением хладагента, позволяющие достичь температур ниже окружающих.
Серийный ватерчиллер на сегодня есть только один, это достаточно неэффективная (около 0 градусов при загрузке 50-70Вт) и дорогостоящая ($330) система от Swiftech. Голландцы OC-Shop.com обещают начать продажи своего чиллера, но за последние полгода не слишком продвинулись к цели. Известна лишь цена продукта - 600 евро, что еще больше, нежели у продукта Swifttech.
По причине отсутствия эффективных серийных чиллеров, остаются два пути - сделать самому или купить чиллер, предназначенный для другого применения.
Существует два основных вида ватерчиллеров: на основе фазового перехода (phase-change) или с использованием модулей Пельтье. Первые представляют собой двухконтурную систему, где испаритель "фреонки" охлаждает хладагент в контуре жидкостного охлаждения. Во втором случае вода или другой хладагент проходит через ватерблок, охлаждаемый модулями Пельтье. Этот вид чиллеров компактнее и проще в изготовлении, но сильно проигрывает в температурах и соотношении "эффективность/потребляемая энергия". Так, 500Вт суммарной мощности модулей дают температуру жидкости чуть ниже нуля градусов при нагрузке около 100Вт...
Итак, решено - будем делать phase-change waterchiller с тремя охлаждаемыми элементами (процессор, северный мост, ядро видеокарты).

Компоненты системы

Проще всего собирать чиллер на базе бытового конциционера. Желательно найти кондиционер, который использует газ R22, а не R134а, так как R22 испаряется при низшей температуре. Для данных целей также подходит система от холодильника. Я использовал кондиционер 5000BTU, обычно в них устанавливаются компрессоры мощностью в 1/2 л.с.

В качестве резервуара подойдет любая ёмкость с теплоизоляцией, а в крайнем случае можно сделать самому. В моем случае - это изолированный бачок для холодной воды.

Главная головная боль тех, кто рискнул заниматься экстремальным охлаждением - теплоизоляция для предотвращения конденсата. Простых методов, описанных в статье "Теплоизоляция ватерблоков" перестанет хватать, если температура приблизится к нулю и ниже. Поэтому в ход пойдет "тяжелая артиллерия". Для теплообменников - монтажная пена-заполнитель и изолента, для трубок и шлангов - поролон с закрытыми порами. Обязательно использование диэлектрической смазки для мест установки ватерблоков (также можно использовать силиконовое покрытие, но его потом невозможно удалить с плат).

Собственно компоненты системы водяного охлаждения, ватерблоки и помпа. Мой комплект состоит из PolarFlo CPU waterblock, Danger Den Z-Chip block, Swiftech MCW50 VGA block и помпы Rio Aqua 1400.

Следующий вопрос - выбор хладагента. В данном случае я руководствовался двумя параметрами: жидкость не должна замерзать при низких температурах и иметь как можно большую теплопроводность. Для низких температур подходят антифриз (кто бы сомневался;)), водка или смесь вода+метанол. Я выбрал метанол: он ядовит (внимание!), но обладает наилучшей теплопроводностью. Один из самых простых способов его достать - купить в автомагазине жидкость для стеклоочистителя.

Сборка

Здесь фотографии помогут больше, чем длительное описание на словах.

Я начал с теплоизоляции ватерблоков. Блок заливался пеной, после высыхания ставилась изоляция на трубки и всё вместе закрывалось изолентой.

Таким образом я теплоизолировал все три ватерблока.

Осталось изолировать материнскую плату. Всё пространство вокруг сокета и чипсета намазал диэлектрической смазкой, тоже самое проделал с блоками, потом сделал прокладки из поролона. Аналогичным образом обработал заднюю сторону материнки и видеокарты, затем установил поролон и закрепил пластинами из акрила.

Когда блоки были готовы, занялся кондиционером. Полностью разобрал его, стараясь ничего не сломать.

Для легкого и безболезненного сгибания трубок в нужных местах рекомендую использовать инструмент под названием "pipe bender" (не знаю точного русского названия).

Третий в моем обзоре тип системы охлаждения, пожалуй, один из самых интересных, эффектных и эффективных.

Как я уже говорил, с законами физики не поспоришь. Рост тактовых частот и производительности современного компьютера неизбежно сопровождается повышением энергопотребления его элементов, следствием этого является увеличение тепловыделения. В свою очередь, это заставляет производителей создавать все новые и все более эффективные системы охлаждения.

Первый раз с такой системой я познакомился поздно – в конце 2006 года на выставке Home Interactive Technologies (HIT) в Питере. Тогда я участвовал в конкурсе моддинга и рядом с моим модом стоял мод парня, который сделал шикарнейший мод с применениям водяного охлаждения.

Система жидкостного охлаждения – это такая система охлаждения, в качестве теплоносителя в которой выступает какая-либо жидкость.
Вода в чистом виде редко используется в качестве теплоносителя (связано это с электропроводностью и коррозионной активностью воды), чаще это дистиллированная вода (с различными добавками антикоррозийного характера), иногда - масло, другие специальные жидкости.

Главная разница в использовании воздушного и жидкостного охлаждения заключается в том, что во втором случае для переноса тепла вместо нетеплоемкого воздуха используется жидкость, обладающая гораздо большей, по сравнению с воздухом, теплоемкостью.

Принцип действия системы жидкостного охлаждения отдаленно напоминает систему охлаждения в двигателях автомобиля - через радиатор вместо воздуха, прокачивается жидкость, что обеспечивает гораздо лучший теплоотвод. В радиаторах охлаждаемого объекта вода нагревается, после чего вода из этого места циркулирует в более холодное, т.е. отводит тепло.

Журчит ручей

Типичная система состоит из водоблока, в котором происходит передача тепла от процессора теплоносителю, помпы, прокачивающей воду по замкнутому контуру системы, радиатора, где происходит отдача тепла от теплоносителя воздуху, резервуара (служит для заполнения системы водой и прочих сервисных нужд) и соединительных шлангов.

Поверхность соприкосновения водоблока с процессором обычно отполирована до зеркального отражения, по уже озвученным мною причинам. Через знакомый термоинтерфейс водоблок крепится на охлаждаемый объект. Обычно он крепится с помощью специальных скоб, что исключает его возможность двигаться. Бывают водоблоки и для видеокарт, но явных отличий от принципа действия процессорных водоблоков нет – все различия в креплении и форме радиатора.

Одна из частых проблем обладателей систем жидкостного охлаждения это перегрев околопроцессорно-сокетных элементов материнской платы, которые могут греться ни чуть не хуже своего старшего брата. Связано это с тем, что обычно в таких системах отсутствует циркуляция холодного воздуха. Как этого избежать? Совет, пожалуй, один – выбирайте системы (совмещайте) с дополнительным кулером, который будет охлаждать остальные греющиеся силовые элементы.

Водоблок через специальные трубки соединяется с радиатором, крепиться который может как внутри системного блока, так и снаружи (например, с задней стороны системника). Второй вариант, пожалуй, предпочтительнее. Судите сами: больше свободного места внутри системного блока, более низкая температура окружающей среды положительно влияет на радиатор. Плюс он дополнительно обдувается корпусным вентилятором.

Резервуар для жидкости, или иначе, расширительный бачок, так же может находиться снаружи системного блока. Его объем в штатных системах варьируется от 200мл до литра.

Производители систем охлаждения стараются заботиться о своих пользователях и прекрасно понимают, что для хорошей системы охлаждения место найдется внутри не каждого системного блока. Тем более, нужно учитывать, что каждый производитель как-то хочет выделиться на фоне других. Поэтому существует огромный выбор внешних систем жидкостного охлаждения (понятное дело, что без соединительных трубок с радиатором на конце никак не пренебречь). Их не стыдно выставить напоказ; обычно внутри таких систем скрывается сразу все – помпа, резервуар, продуваемый вентиляторами радиатор. Но и стоят они, обычно, демонстративно дорого.

Итог по системам водяного охлаждения

Для чего же применять жидкостные системы охлаждения? Ведь если посудить строго, то обычных штатных кулеров всегда достаточно, в обычных условиях работы ПК (если бы это было не так, то их бы не ставили, а ставили системы жидкостного охлаждения). Поэтому чаще всего такую систему следует рассматривать с позиции разгона – тогда, когда возможностей воздушной системы охлаждения будет не хватать.

Другим плюсом жидкостной системы охлаждения является возможность ее установки в ограниченном пространстве корпуса. В отличие от воздуха, трубки с жидкостью можно задать практически любые направления.

Ну и еще один плюс такой системы – ее беззвучность. Чаще всего помпы заставляют циркулировать поток воды по системе, не создавая шума больше значения в 25 дБ.

Минус, как я уже отметил – зачастую, дороговизна установки.

Система охлаждения на элементах Пельтье

Среди нестандартных систем охлаждения можно отметить одну очень эффективную систему – на основе элементов Пельтье. Жан Шарль Атаназ - французский физик, открывший и изучивший явление выделения или поглощения тепла при прохождении электрического тока через контакт двух разнородных проводников. Устройства, принцип работы которых использует данный эффект, называются элементы Пельтье.

В основе работы таких элементов лежит контакт двух проводников с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт этих материалов, электрону необходимо приобрести энергию, чтобы он мог перейти в зону с бОльшей энергией проводимости другого полупроводника. Охлаждение места контакта полупроводников происходит при поглощении этой энергии. Нагревание же места контакта происходит при протекании тока в обратном направление.

На практике используются только контакт двух полупроводников, т.к. при контакте металлов эффект настолько мал, что незаметен на фоне явления теплопроводности и омического нагрева.

Элемент Пельтье содержит одну или несколько пар небольших (не больше 60х60 мм) полупроводниковых параллелепипедов - одного n-типа и одного p-типа в паре [обычно теллурида висмута (Bi2Te3) и германида кремния (SiGe)]. Они попарно соединены металлическими перемычками, которые служат термическими контактами и изолированы не проводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединены так, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости - протекающий электрический ток протекает последовательно через всю цепь. В зависимости от того, в каком направлении течет электрический ток, верхние контакты охлаждаются, а нижние нагреваются - или наоборот. Таким образом переносится тепло с одной стороны элемента Пельтье на противоположную и создаётся разность температур.

При охлаждении нагревающейся стороны элемента Пельтье (радиатором или вентилятором) температура холодной стороны становится ещё ниже.

Итог по элементам Пельтье


К достоинствам такой системы охлаждения можно отнести небольшие размеры и отсутствие каких-либо подвижных частей, а также газов и жидкостей.
Ложкой дегтя является очень низкий коэффициент полезного действия, что приводит к большой потребляемой мощности для достижения заметной разности температур. Если включить термоэлектрическую пластинку без нагрузки (процессор не будет греться), то Вы рискуете стать свидетелем интересной картины – на элементе Пельтье, при охлаждении до точки росы, появится иней, который хлебом не корми – дай закоротить контакты.

Так же, если элемент Пельтье выйдет из строя, то будет еще одно зрелище – из-за отсутствия контакта между радиатором (или кулером) и процессора, последний моментально нагреется и может выйти из строя.

Элементы Пельтье еще обязательно найдут широкое применение, так как без каких-либо дополнительных устройств они легко позволяют получить температуры ниже 0°C.

Системы фазового перехода (фреоновые установки)

Чувствуете, как читая текст, становится все холоднее и холоднее? Еще бы – медленно, но верно спускаемся в диапазон низких температур.
Сейчас мы рассмотрим не очень распространенный, но очень эффективный класс систем охлаждения – системы, хладагентом в которой выступают фреоны. Отсюда и название – фреоновые устанвоки. Но более правильно было бы называть такие системы системами фазового перехода. На принципе действия таких систем работают практически все современные бытовые холодильники.

Но давайте по-порядку. Один из вариантов охладить тело - заставить вскипеть на нем жидкость. Для перехода жидкости в пар, необходимо затратить энергию (энергия фазового перехода) – то есть закипая, жидкость отбирает тепловую энергию от окружающих ее предметов. Но мысленно возвращаясь в стены школьного кабинета физики, мы вспомним, что при текущем давлении мы не сможем нагреть жидкость выше температуры ее кипения. Кто из нас показывали друзьям такой фокус – наливая сок в пластиковый стаканчик и держа под дном стакана пламя? Можете попробовать - никаких катаклизмов не произойдет, пока весь сок не выкипит;)

Всем известная Википедия трактует слово «Фреоны» как галогеноалканы, фторсодержащие производные насыщенных углеводородов (главным образом метана и этана), используемые как хладагенты. Кроме атомов фтора, в молекулах фреонов содержатся обычно атомы хлора, реже - брома. Известно более 40 различных фреонов; большинство из них выпускается промышленностью. Фреоны - бесцветные газы или жидкости, без запаха.

Если же взять такую жидкость, которая будет закипать, скажем, при -40°С, то сосуд, в котором свободно кипит эта жидкость (такой сосуд называют испарителем), будет очень сложно нагреть. Его температура будет стремиться к -40°С. А поставив такой сосуд на нужный нам объект охлаждения (например, на процессор), мы сможем добиться того, чего и хотели – охладить систему.

Но понятное дело, лазить с определенным интервалом под стол и заливать жидкость в испаритель никто не будет – нужно из пара жидкости опять получить саму жидкость, которая будет снова подаваться в испаритель. Вот Вам пища для самостоятельных размышлений.

Ладно-ладно. В результате размышлений вы должны прийти к схеме следующего вида: мощный компрессор после испарителя качает газ и подает его под большим давлением в конденсор. Там газ конденсируется в жидкость и отдает тепло. Конденсор, выполненный в виде радиатора, рассеивает тепло в атмосферу – этот этап мы уже хорошенько рассмотрели в предыдущих системах. Далее жидкий фреон поступает к испарителю, где выкипая, отбирает тепло – вот и весь замкнутый цикл. Цикл «фазовых переходов» потому так и назван - фреон попеременно меняет свое агрегатное состояние.

Системы фазового перехода, испарители (холодильники) которых устанавливаются непосредственно на охлаждаемые элементы, называются системами «Direct Die». Холодными в такой системе являются только сам испаритель и отсасывающая трубка, остальные же элементы могут иметь комнатную температуру или выше. Холодные элементы нужно тщательно теплоизолировать для предотвращения образования конденсата.

Минусом фреонок является относительная громоздкость испарителя и отсасывающей трубки, поэтому объектом охлаждения выбираются лишь процессор и видеокарта.

Есть и еще одна разновидность систем охлаждения, о которой я пока не упомянул – чиллеры. Этот класс систем состоит в основном из систем жидкостного охлаждения, отличием же является наличие второй части (холодильника теплоносителя), которая работает вместо радиатора – зачастую эта часть является той самой системой фазового перехода. Достоинством такой системой является то, что ей можно охладить все элементы системника, а не только видеокарту и процессор (в отличие от «direct die»-систем). Система фазового перехода чиллера охлаждает лишь теплоноситель системы жидкостного охлаждения, то есть в замкнутом контуре течет очень холодная жидкость. Отсюда и минус систем такого типа – необходимость изолирования ВСЕЙ системы (водоблоки, трубки, насосы и т.п.). Если же изолировать не хочется, то можно использовать маломощную фреоновую установку для чиллера, но тогда об экстремальном разгоне можно будет забыть. Тут уж выбирайте, Вам шашечки или ехать.

Итог по фреонкам


К блестящей стороне медали можно отнести возможность достижения очень низких температур, возможность постоянной работы (в отличии от системы, которая рассмотрена далее). Высокий КПД системы (потери минимальны). Из постоянных систем охлаждения, фреонки – самые мощные. При этом они позволяют выносить тепло из корпуса, что положительно сказывается на температурах внутри него.

К стороне медали, намазанной дегтем, относятся такие особенности системы, как сложность изготовления такой системы [ серийно выпускаемых систем не так много, цены сопоставимы со стоимостью запуска шаттла;) ]. Небольшой вес и маленькие габариты – все это в полной мере отсутствует в установках данного типа.

Условная стационарность системы. Практически во всех случаях (кроме тех случаев, когда Вы не планируете заниматься экстремальным разгоном) – потребуется теплоизоляция всей системы. Ну и самый, пожалуй, негативный момент – более чем ощутимый шум от работы (50-60 дБ).

Еще одним минусом фреонок является то, что на покупку фреона нужна лицензия. У кого ее нет, выбор не велик: в свободной продаже есть только один - R134a (точка кипения которого -25°С).

Существует еще один хладагент - R290 (пропан), но сейчас он не используется в охладительных системах (возгораемость). Он обладает очень хорошими свойствами: точка кипения -41°С, совместим с любым маслом компрессора и главное, дёшев.
Одевайте варежки, «слоники» и шапки с шубой - мы добрались до самого холодного момента в этой статье.

Система экстремального охлаждения

Ну и в завершающей главе моей сегодняшней статьи станут системы, в качестве хладагента в которых используется жидкий азот.

Жидкий азот представляет собой прозрачную жидкость, без цвета и запаха, температурой кипения (при нормальном атмосферном давлении) которой равна ни много ни мало -195.8 градусов по Цельсию! Для хранения жидкого азота применяют специальные резервуары - сосуды Дьюара объемом от 6 до 40 литров. Тут вот Word подсказывает, что 40 литров это еще и 70.39 английских пинтов, 84.52 американских, 10.56 галлонов или 42.46 квартов;)

Установки данного типа предназначены только для экстремального охлаждения, в экстремальных условиях. Одним словом, при разгоне.

Всем по стакану

Системы с жидким азотом не содержат никаких помп (температура, знаете ли, не располагает;) или других подвижных элементов. Она представляет из себя высокий металлический (медный или алюминиевый) стакан с дном, который плотно соединяется с центральным процессором. Достать такую штуковину не так-то просто (хотя что в наше время не купишь?) – поэтому умельцы зачастую делают его самостоятельно.

Основной проблемой при разработке стакана является обеспечение процессора при полной нагрузке минимальной температурой. Ведь теплопроводные свойства жидкого азота сильно отличаются от той же воды. Он берет лишь тем, что «промораживает» стенки стакана, позволяя охладить процессор до температуры ниже 100 градусов. А так как тепловыделение камешка в простое и в режиме полной нагрузки отличается достаточно существенно (а скачки происходят мгновенно) - стакан часто не в состоянии вовремя эффективно отвести тепло. Для современного процессора оптимальной температурой является -110-130 градусов. Да, подойдет не любой термоинтерфейс. DeDaL советует AS ceramique.

После изготовления стакана, его (и материнскую плату) нужно тщательно теплоизолировать, чтобы конденсат, который неминуемо образуется от такого перепада температур, не замкнул какие-нибудь контакты на материнской плате. Обычно используют различные пористые и пенистые материалы, например вспененный каучук – неопрен. В несколько слоев обматывают отрезанным куском, после чего закрепляют тем же скотчем.

С изоляцией материнской платы несколько сложнее. Чаще всего поступают так – заклеивая разъемы, все «заливают» диэлектрическим лаком. Причем, с обратной стороны материнской платы такую процедуру тоже нужно проделать – в районе процессорного сокета. Такая лакировка абсолютно не мешает работе платы (хотя, вы автоматически лишаетесь гарантии – так, на всякий случай, если еще не лишились) – но зато вы почти гарантированно исключаете возможность пострадать от протекания жидкого азота.

Махмуд, поджигай!

Дальше все просто. После того, как Вы тщательно соберете все компоненты, можно приступать. С помощью какой-то промежуточной емкости (например, термос или какой-то другой теплоизолированный стакан) наливаете азот в стакан на материнской плате, после чего можете мучить свою систему, например, проведением забугорского синтетического теста;)

Кстати о тестах – вот список тех бенчмарков, которые официально приняты:
- 3Dmark 2001
- 3Dmark 2003
- 3Dmark 2005
- 3Dmark 2006
- Aquamark 3.0
- Super Pi как самый фундаментальный
- Pifast

Для часа работы компьютера достаточно 4-5 литров азота. Заливать в стакан нужно примерно до половины, причем постоянно поддерживая этот уровень.

Достать азот в наше время не является нерешаемой задачей. На каком-нибудь заводе вам его отпустят по цене рублей в 30 за литр. Попробовать купить его можно и в различных медицинских учреждениях. Естественно, нужно везде заранее созваниваться и все узнавать!

Что будет, если азот попадет на какую-либо часть тела? Смотря на какую. Если в глаза – пиши-пропало. Если же немного прольется на руку – ничего страшного не случится. Дело в том, что на поверхности кожи азот сразу закипает, благодаря этому между рукой и азотом образуется воздушная прослойка. Но все в этом мире не вечно… поэтому купаться и даже умываться крайне не советую. Устрашающего вида теплоизоляционные перчатки на руках тех, кто работает с азотом – это чаще всего просто требуемая техника безопасности, за несоблюдение которой больно ругают.

Что является недостатком такой системы охлаждения? Мне кажется, тут все очевидно. Вряд ли кто-то будет спокойненько серфить интернет или моделировать что-то, пусть и ресурсоемкое. Систему с азотом нельзя собрать в небольшую системку под столом и чтобы она там сама по себе стояла. Говоря иначе, такое охлаждение не подходит для решения бытовых задач – нужен постоянный и ответственный контроль, все нужно стараться делать тщательно и без ошибок.

Но зато как элегантно и демонстративно это со стороны…;)

Морозная свежесть


Итак, самое время подвести итоги. Мы узнали, что является самым главным нагревателем в компьютере - это центральный процессор, он же камень. После камня друг за другом идут видеокарта, чипсет материнской платы, жёсткий диск, системная память и различные платы расширения. Практически всегда и на всех компонентах компьютера, требующих охлаждения, оно(охлаждение) уже установлено и для штатного режима работы его вполне достаточно. Если Вы не собираетесь разгонять компьютер, то и модифицировать систему охлаждения Вам не имеет смысла.

Основное, что нужно помнить – что обязательно нужна вентиляция внутри корпуса, т.к. холодный воздух, приходящий из окружающей среды, для той же видеокарты будет намного полезней, чем установка или замена идущего в комплекте кулера на более дорогой.

Если же в Ваши планы входит разгон, то всегда нужно помнить 4 простых правила, однажды кем-то озвученных:

1. Всегда есть вероятность схода с дистанции каких-то участников мероприятия, по разным причинам - начиная от неправильных действий разгоняющего и кончая неправильными действиями производителя, не предугадавшего, что вот именно данная конкретная железка пойдет В РОССИЮ и там ее однозначно будут эксплуатировать на различных нештатных режимах.

2. Гарантии (и возможности продать это оборудование как исправное) в таком случае вы скорее всего лишаетесь, и винить в этом вы будете вынуждены только себя.

3. Устройства «noname» китайского производства рекомендуется исключить из состава вашей машины.

4. Три кита, на которых держится разгон - голова на плечах, руки с правильной заточкой, хорошее охлаждение. При отсутствии хотя бы одного из них можете расслабиться и о разгоне забыть.

Титры

Возможно, в каких-то моментах я был не прав – каюсь. Возможно, Вы все это давно знали – тогда искать причину «вселения злого духа» в компьютер Вам нужно самостоятельно и в другом месте. Я же свою миссию, рассказать об основных системах охлаждения, считаю выполненной;) Задавайте вопросы, комментируйте.

P.S. Глава про азотное охлаждение была проверена и одобрена мировым рекордсменом по экстремальному охлаждению, DeDal -ом. Благодарю за помощь! ;)

P.P.S Если кому понравилась картинка с бумером (делал сам), то вот фулсайз)

Который проводит фирма Gigabyte. Требовалось написать обзор корпуса 3D Aurora. Я сначала согласился, а потом, когда прикинул что к чему, призадумался. Ведь я же не профессиональный писатель обзоров, к тому же серийными корпусами не пользуюсь уже года как три, как минимум. И если честно и пристально посмотреть правде в глаза, становится кристально ясно – писать этот обзор совершенно неинтересно и, естественно, ужасно не хочется. Я уже хотел звонить и отказываться, но все откладывал и откладывал. Прошло какое-то время, и обещание самым естественным образом забылось.

Две недели назад до меня все же дошла очередь на получение корпуса. Я так "обрадовался", что дня три не открывал коробку. Но чувство долга в конце концов победило, и я заглянул внутрь. Скажу сразу: удивительно, но кейс мне понравился. Первое, что поразило, – это размеры: высота 54.5, глубина 51.5, а ширина обычная – 20.5 см.

Корпус выпускается в двух цветовых решениях, черном и серебристом. Мне достался черный вариант. Корпус позиционируется как high-end решение и не комплектуется блоком питания.

На меня эта черная громадина сразу произвела впечатление своим стильным, запоминающимся видом. Дизайнеры поработали на славу. Корпус хотя и большой, но легкий. Изготовлен почти целиком из алюминия. Покраска качественная, ровная, с шелковистым отблеском.

Доступ к пяти 5.25" отсекам и двум 3.5" открывает массивная алюминиевая дверка. Фиксируется дверка в закрытом положении магнитом. В качестве защиты от распоясавшихся злоумышленников эту дверку можно закрыть на ключ. Рядом с 3.5" отсеками расположены кнопки Power и Reset. Нажатие легкое, с приятным на слух легким щелчком.

Ниже дверки располагается выступающая панель, усыпанная вентиляционными отверстиями. За ней расположен 120-мм вентилятор с подсветкой. Воздух внутрь корпуса он втягивает через пылезащитный фильтр. Свет от вентилятора очень красиво пробивается сквозь вентиляционные отверстия.

Справа от этой панели, на боку, расположены два USB, один IEEE 1394 и пара mini-jack"ов: микрофон и наушники. Здесь же расположены и два светодиодных индикатора работы системного блока и активности HDD.

Вот внешний вид корпуса со снятой лицевой панелью

Алюминиевые боковые стенки имеют непривычное крепление. Для того чтобы их снять, стенки нужно не сдвигать, а немного оттянуть и приподнять вверх. Левая стенка для удобства оперативного снятия имеет ручку-защелку и еще один замок с ключом. Имеется в ней также и окно, но не традиционное, из акрилового стекла, а сетчатое, скорее даже дырчатое. Для дополнительной защиты внутренностей от пыли это окно ограждено изнутри еще более мелкой сеткой. Стоит корпус на четырех ножках, которые для устойчивости корпуса можно раздвинуть.

Шасси корпуса довольно крепкое благодаря большому количеству ребер жесткости и дополнительным усиливающим элементам. Нет ни намека на шаткость конструкции. Внутри корпуса много свободного пространства, особенно понравилось большое расстояние между материнской платой и отсеком блока питания.

Корпус рассчитан на безотверточную сборку. Дисководы устанавливаются с помощью пластиковых салазок. Заглушки слотов карт расширения не выламываемые, а съемные, и крепятся все одновременно специальным рычагом-ключом.

Отсек для жестких дисков расположен поперек корпуса. Комфортную температуру винчестерам обеспечивает обдув этого отсека 120-мм вентилятором. В этом же отсеке расположен черный пластиковый бокс, содержащий два переходника питания для SATA-устройств, набор пластиковых салазок для установки 5.25" и 3.5" устройств в корпус, два пластмассовых крепежа для проводов, два комплекта ключей (разных) для передней дверцы и боковой крышки и комплект крепежных винтов.

Провода, идущие внутри корпуса от вентиляторов и лицевой панели, прикреплены к корпусу и уложены в черную трубку. Трассировка довольно удачна.

А теперь о том, что привлекло мое внимание к этому корпусу. Это, как ни странно, задняя панель.

На ней расположены два 120-мм прозрачных вентилятора с подсветкой. Ниже находятся два отверстия, защищенных резиновыми заглушками с лепестками. Сделано это для установки системы водяного охлаждения 3D Galaxy, производства все той же Gigabyte. Вот эти вентиляторы и отверстия превратили скучную процедуру написания обзора в увлекательное занятие.

Когда я увидел эти два 120-мм вентилятора на задней стенке корпуса, то мне сразу вспомнилась давняя идея встроить самодельную фреоновую систему охлаждения в стандартный корпус. Хотелось не просто встроить систему в корпус, а сделать это красиво, интересно и по возможности оригинально. Но я все никак не мог найти подходящий корпус, большой и прочный. Как-никак, компрессор, конденсор и прочие медные трубки весят прилично. К тому же компрессор при работе вибрирует. И, конечно, кроме прочностных ограничений хотелось, чтобы кейс стильно выглядел. 3D Aurora как раз и отвечал всем этим требованиям.

Все фреоновые системы, которые мне встречались, строились как блок, на котором стоит стандартный корпус. В дне корпуса приходится прорезать отверстие под испаритель. Но при такой компоновке отверстие должно быть приличных размеров. Калечить качественный корпус не хотелось, а здесь почти готовое решение.

Сразу начали вырисовываться контуры системы. Если разместить снаружи корпуса, напротив вытяжных вентиляторов, конденсор, то он будет ими отлично охлаждаться, заодно вентилируя корпус. Через готовые отверстия, предназначенные для трубок водяного охлаждения, прекрасно можно пропустить медные соединительные трубки системы. Остается только компрессор. Куда поместить его?

Недавно, экспериментируя со своей целиком самодельной фреоновой системой...

Я с удивлением обнаружил, что прекрасно слышу шум помпы, установленной в системе водяного охлаждения чипсета материнской платы. До этого я, как человек, избалованный бесшумностью своего основного компьютера ...

Считал фреонки ужасно шумными устройствами. Обычными воздушными кулерами я тоже давненько не пользовался, поэтому сравнивать было не с чем. А тут оказалось, что сквозь шум от двух не самых слабых компрессоров отчетливо слышна помпа производительностью 700 л/ч. Выходит, компрессоры шумят не так уж и сильно!

Так почему бы тогда не расположить компрессор просто на крыше корпуса? Это улучшит его охлаждение. Как выяснилось, шум от компрессора не так уж и велик. Прочности корпуса от Gigabyte для такой цели более чем достаточно. И я приступил к осуществлению задуманного.

По решению представителей фирмы Gigabyte корпус одновременно является и призом победителю конкурса. Я, естественно, пока таковым не являюсь и должен возвратить изделие неповрежденным. Поэтому задача несколько усложнялась.

Из-за этих ограничений я прикрепил компрессор L57TN не к верхней крышке корпуса, а к алюминиевой платформе, потихоньку открученной от гладильной доски. (Потом пришлось объяснять супруге, что штукенция эта, скорее всего, отвалилась сама, упала на пол в кладовке и, естественно, куда-то завалилась. Потом она, конечно, найдется... Но не буду отвлекаться.) Платформу эту с установленным компрессором через прокладку из пенофола я и поставил на крышу корпуса. Заодно это должно снизить вибрацию от работающего компрессора.

Теперь о конденсоре. Конденсор, чтобы не мешать подключению устройств к материнской плате, должен быть не шире 120-мм вентилятора, а по высоте соответствовать двум таким вентиляторам. Готовый такой не подобрать, но можно попробовать сделать самому.

Простейший конденсор можно изготовить, намотав спиралью обычную медную трубку. Но спираль имеет большие габариты. Поэтому я сделал из дерева шаблон плоской спирали и уже на него намотал медную трубку диаметром 6 мм.

По бокам спирали припаял медную проволоку с крепежными колечками, соответствующими крепежным отверстиям вытяжных вентиляторов. После я прикинул, как это будет размещаться вживую.

Крепить испаритель и всасывающую трубку к системе я решил на развальцовке. Соединительные муфты легко проходят в отверстия корпуса.

Чтобы не повредить корпус горелкой я, что смог, спаял отдельно от корпуса. Капиллярную трубку смотал в бухту, а последнюю часть пропустил через всасывающую трубку в испаритель.

Испаритель я применил самодельный. Сделан он из половинки серийного кулера Volkano7+.

Так выполняется развальцовка:

В качестве всасывающей я применил обычную медную трубку диаметром 10 мм. Не стал применять сильфон из нержавейки из-за того, что размеры корпуса позволяют помещать в него материнскую плату и без сильного отгиба испарителя. Да и не известно, кто окажется первым в конкурсе – возможно, придется вернуть корпус. Поэтому нестись в магазин за сильфоном я посчитал неразумным.

Вот что получилось.

Чтобы точнее подогнать размеры трубки, пришлось поставить в корпус материнскую плату.

Система собрана, спаяна и опрессована – пора приступать к теплоизоляции. Испаритель я изолировал полосой 3-мм пенофола, приклеив его на двусторонний скотч.

Предварительно я прикрепил к испарителю датчик от электронного термостата Dixell XR20C. На этом же устройстве будет построена и автоматика включения компьютера. Фреоновой системе для охлаждения процессора до определенной величины нужно время, иначе прилично разогнанный процессор может просто перегреться. Вышеуказанное устройство и обеспечит автоматическое включение компьютера по достижении определенной температуры на испарителе, значение которой можно установить вручную.

Существует целый ряд подобных устройств. Для использования в качестве автоматики они требуют минимальной доработки. Я использовал простейшее устройство, содержащее только контакты управления компрессором.

Работает прибор следующим образом. После включения устройство самодиагностируется, после чего замыкает контакты, которые по замыслу конструкторов и включают компрессор. По достижении на датчике определенной температуры размыкают контакты, отключая тем самым компрессор. После того как температура повысится, цикл повторяется.

В нашем случае компрессор работает постоянно, и управлять им не нужно. И требуется не выключать, а включить компьютер по достижении определенной температуры. Для этого нужно инвертировать выход устройства. Люди, хорошо разбирающиеся в электронике, без труда сами могут составить такую схемку, например, на "логике". Я же покажу, как собрать подобную схему человеку, далекому от электроники.

Мне кажется, что проще всего это можно сделать на автомобильном реле.

У реле есть несколько контактов. Два контакта – контакты катушки электромагнита. При подаче напряжения на них электромагнит притягивает коромысло, которое и замыкает одну группу контактов, размыкая другую. В нашем случае нам нужны контакты, замкнутые при отключенном питании катушки электромагнита реле. Если включить реле подобным образом,

происходит следующее. При включении терморегулятор подает напряжение на реле. Контакты, отвечающие за включение компьютера, размыкаются и остаются разомкнутыми до момента, когда термодатчик зафиксирует температуру, необходимую для включения компьютера. Тогда контакты терморегулятора размыкаются, а в реле замыкаются.

Конденсатор с сопротивлением нужен для имитации работы кнопки включения компьютера. Работает эта цепь следующим образом. При замыкании контактов Power ON конденсатором в цепи потечет ток зарядки конденсатора – аналог нажатия кнопки Power ON. После зарядки конденсатора ток в цепи прекращается – аналог отпускания кнопки Power ON. Емкость конденсатора должна быть в пределах 200-400 мкФ, сопротивление 15-20 кОм.

Для работы такой автоматики необходим источник питания напряжением 12 вольт. Также для работы фреоновой системы необходим обдув конденсора вентилятором. А как они будут работать, если блок питания включится только после того, как система должна набрать заданный минус? Поэтому специально для автоматики и работы вентиляторов нужно ставить в корпус отдельный блок питания, выдающий 12 вольт постоянного тока. Назову его блоком питания дежурного режима. К нему и подключаются автоматика и вентиляторы.

Для данной системы я собрал самодельный блок питания, но можно было купить и готовый. Нужно только обратить внимание на максимальный ток нагрузки такого блока. Он в данном случае должен составлять не менее одного ампера.

Всю эту электрическую часть я поместил в корпус от Hardcano, заменив у того лицевую панель на обычную заглушку 5.25" отсека, выкрашенную в серебристый цвет. Все-таки в пластмассе вырезать отверстия гораздо проще, чем в алюминии.

На фотографии видно, что электромонтаж не закончен. Справа от терморегулятора расположен выключатель. С его помощью и включается компрессор, да и все остальное. После сборки устанавливаем блок в отсек и подключаем к нему все провода.

Монтируем все комплектующие в корпус. Под материнскую плату для теплоизоляции я поместил кусок листового пенофола. Толщину подобрал такую, чтобы винты, крепящие материнскую плату к шасси, немного сжали этот теплоизолятор. Между платой и пенофолом не должно быть воздушных пузырей, иначе из этого воздуха при работе системы охлаждения на плату может выпасть конденсат и замкнуть контакты платы. Для гарантированного исключения этого неприятного момента плату под прокладкой я промазал слоем технического вазелина.

По отпечатку термопасты примеряем прилегание испарителя к процессору. Испаритель к процессору я прижимаю с помощью резьбовых шпилек. Корпус, как уже говорил, сверлить нельзя, и пришлось прикрутить эти шпильки прямо к отверстиям в материнской плате. Тут приключилась пара неприятностей, о которых я расскажу в заключительной части статьи.

После этого заканчиваем теплоизоляцию. Осталось самое простое – теплоизоляция трубок. Берется трубчатый рубафлекс, разрезается вдоль ножницами, одевается на трубки и склеивается. Вот и все готово для заправки системы.

Заправляю систему фреоном марки R22. Подробнее о заправке и вакуумировании написано уже более чем достаточно, поэтому не буду отнимать время и описывать эту процедуру еще раз. Напомню только, что в системе использовался компрессор марки L57TN, длина капилляра 2.9 метра. Заправляю систему до промерзания всасывающей трубки до входа в компрессор.

Система без нагрузки выдает температуру -43.8°C.

Выключаю систему. Проверяю еще раз прилегание испарителя к процессору, оказавшееся не слишком плотным. Всасывающая трубка имеет приличную жесткость и немного пружинит. К тому же теплоизоляция на испарителе немного ниже самого испарителя. Сделано это для исключения попадания воздуха в щели теплоизоляции. Притягивать же сильно испаритель к процессору я боюсь. Шпильки-то прикручены не к шасси корпуса, а к материнской плате, и есть риск выломать их из платы.

Отпечаток термопасты получается несколько "однобоким", а верхний левый угол испарителя почти не касается процессора. Но что делать, будем пробовать как есть.

Включаю систему. По достижении температуры на испарителе –20 включается сам компьютер. Автоматика отработала успешно, операционная система загружается – все нормально.

Конфигурация установленного железа такова:

  • процессор – AMD Athlon 64 3200+;
  • материнская плата – DFI Lan Party UT nF4 SLI-D;
  • видеокарта – Leadtek PX7800GT;
  • память – Digma DDR500;
  • жесткий диск – Seagate 160 Gb;
  • блок питания – Hiper R type 480 W;
  • термопаста – КПТ-8.

Первым делом проверяю систему на разгон процессора.

Но тут началась чертовщина. Дальше процессор почему-то гнаться отказался. Я снизил частоту опять до 3100 MHz, но Windows перестал грузиться. Еще более понизил частоту – опять то же самое. И тут я попробовал рукой прижать испаритель к процессору. Система загрузилась. Тогда я еще немного подтянул крепежные гайки. Система снова загрузилась при 3100 MHz, но тест S&M не проходила. Тогда я заглянул в BIOS. Там в разделе мониторинга температура процессора прыгала как гимнаст на батуте: то –14, то +14. Все ясно, причина в плохом прижиме испарителя к процессору. Видимо, от вибрации контакт процессор–испаритель меняется, и, как следствие, скачет температура, что и сказывается на стабильности работы системы.

Дальше подтягивать гайки уже откровенно страшно. Существует большая вероятность выдрать шпильки вместе с текстолитом платы. Но прижим все равно недостаточен. Выход только один: сверлить отверстия в шасси компьютера и сжимать процессор уже не между платой и испарителем, а между металлическим шасси и испарителем, без риска повреждения материнской платы. А сверлить корпус нельзя. Очень жаль, но придется остановиться на этом.

Теперь несколько слов о личных впечатлениях о работе системы. Плохой прижим испарителя – легко устраняемый дефект. Можно прямо по месту просверлить отверстия и закрепить все как следует. И если даже при плохом контакте операционная система загружается с частотой процессора 3100 МГц, то, скорее всего, при нормальном охлаждении этот результат увеличится. Теплоизоляция прекрасно справляется со своей задачей. Никаких следов конденсата не было обнаружено.

О шуме. Компрессор работает очень тихо. Если наклониться над ним и прислушаться, то слышен небольшой шелест. Основной шум исходит из открытого корпуса. Видимо, по нагнетающей трубке и через станину компрессора вибрация передается корпусу, и он издает низкочастотный гул. Я вначале был поражен, что шум идет не от компрессора, а из корпуса. Но потом разобрался, в чем дело. Судя по всему, для комфортной эксплуатации оклеивание корпуса виброшумоизоляцией обязательно.

Неплохо было бы привернуть ручки на верхнюю крышку корпуса. Вес корпуса за счет системы охлаждения увеличился, и передвигать его стало сложно. К тому же взяться не за что.

Также из-за размещения компрессора на верхней крышке корпуса центр тяжести системного блока поднялся. Поэтому теперь даже с разложенными ножками корпус немного неустойчив. Неплохо бы утяжелить нижнюю часть корпуса каким-нибудь балластом. Это поможет и снизить вибрацию корпуса.

Желательно укрепить верхнюю крышку корпуса – виброшумоизолировать и прикрепить компрессор непосредственно к ней. Также необходимо увеличить толщину резиновых прокладок, через которые конденсатор крепится к корпусу, и попробовать сделать амортизаторы между витками конденсора. Все это должно дополнительно снизить шумность системы. Хотя и в таком виде самым шумным компонентом системы является вентилятор видеокарты.

Если суммировать все вышесказанное, то мы получили удобный, качественный корпус с прекрасной вентиляцией и с возможностью встраивания не только водяной, но и фреоновой системы охлаждения. Можно сказать, мечта оверклокера. Когда смотришь на этот корпус, не оставляет чувство, что перед тобой солидная, добротная и вместе с тем красивая и стильная вещь.

Думаем, никто не будет спорить с тем, что качественное охлаждение для видеокарты является одним из главных залогов ее долговечности и производительности. 3D-ускоритель - самый "горячий" компонент современного персонального компьютера. С развитием технологий появляются современные видеокарты, способные работать с самыми требовательными программами и играми. Однако с ростом производительности увеличивается и их энергопотребление, а также тепловыделение. Рассмотрим же подробно охлаждение для видеокарт.

Введение

Для видеокарты уберегает от перегрева графический процессор ускорителя. Прошли те времена, когда нагрев компонентов системного блока практически отсутствовал. Постепенно для пользователя становятся нормальными те температуры, которые не так давно считались критическими. Недавно для нормального охлаждения видеокарты хватало лишь радиатора. Сегодня, конечно, есть еще ускорители, которые выделяют мало тепла, но и производительностью они похвастаться не в силах. Все чаще производители наделяют своих детищ массивными кулерами с несколькими вентиляторами и внушительным радиатором. Пользователи, которые выжимают из своего компьютера максимум, устанавливают не только охлаждение для видеокарт, но и для других компонентов. Нередко встречаются материнские платы с кулером, да и сами кейсы производитель стал поставлять с дополнительными вентиляторами. Лишними они уж точно не будут, учитывая температуры современных компонентов. Сейчас даже популярна программа для охлаждения видеокарты, которая снижает нагрузку на графическое ядро. Правда, эффективность утилит довольно низка.

Виды систем охлаждения

Как правило, система охлаждения для видеокарты представляет собой каркас, на который крепится радиатор и один или несколько вентиляторов. Производитель при этом нередко экономит на деталях. Исключением являются дорогие решения для выполнения сложных задач. Дешевое охлаждение для видеокарт неплохо сбивает температуру, но очень шумит. Есть, конечно, системы, которые бесшумны в работе и не теряют эффективность.

Сегодня производители кейсов предлагают модель, которая выполнена из алюминия. Все компоненты системного блока становятся более холодными, в их число входит видеокарта. Пассивно охлаждение, при котором используется обычный радиатор, в чем-то схоже с этой системой.

Фреоновое охлаждение

Видеокарты с пассивным охлаждением уходят в прошлое, но не многие пользователи хотят променять работу в тишине на хорошую производительность системы с ревом кулера. Компании нашли выход - фреоновое охлаждение. Стоит сказать, что оно поставляется в составе некоторых системных блоков, а не видеокарт. Само собой, такие кейсы стоят дороже, чем обычные представители. При этом вентилятор охлаждения видеокарты и радиатор может использоваться дополнительно.

Фреоновая система охлаждения для неопытного пользователя кажется очень сложной и непонятной. На самом же деле, здесь все довольно просто. Применяется замкнутый контур, в котором находится газ (фреон). В процессе эксплуатации он переходит из одного агрегатного состояния в другое, охлаждая, таким образом, площадку, к которой подсоединен. Для любителей подобных систем весь процесс рассмотрим подробнее.

Первым делом фреон, находясь в жидком, охлажденном состоянии и низком давлении, поступает к контактной площадке. Затем он переходит в газообразное состояние, чему способствует выделяемое тепло. В составе системы есть небольшой компрессор, который поднимает давление в трубках, но фреон еще не перешел в жидкое состояние. Для этого используется вентилятор и небольшой радиатор, который понижают температуру фреона. Впоследствии происходит конденсация и превращение в жидкость. Заключением цикла становится проход фреона через клапан, где падает его давление. Подобная система служит не только, как охлаждение видеокарт Nvidia и Radeon, но и используется в холодильниках.

Система неплоха, но работает с некоторыми оговорками, которые отталкивают многих пользователей от покупки. Функционировать фреоновое охлаждение может не с каждым процессором, а лишь с моделями, энергопотребление которых выше 75 Вт. Причиной этому то, что при слишком низком выделении тепла может образовываться конденсат, который на пользу компонентов системного блока точно не пойдет. Подойдет, как отличное охлаждение видеокарт Radeon, славящихся своим тепловыделением.

для видеокарты

Сегодня популярным способом охлаждения стали жидкостные системы. Устроена подобная система довольно просто. Используется несколько трубок, по которым циркулирует жидкость (чаще всего вода). Контактируя с компонентами системами, производит отвод излишек тепла. Водяное охлаждение более эффективно, занимает меньше места в системном блоке, а также может похвастаться бесшумной работой. Этим системам отдают предпочтения звуковые студии, которым важна тишина. Не жалеют денег и любители современных видеоигр, дабы получить максимальную производительность. Кстати, подобные системы используются не только в персональных компьютерах. Чаще всего для охлаждения ядерных реакторов используется жидкостный теплоноситель. Большая часть двигателей автомобилей используют схожую систему.

Несмотря на стоимость, пользователи все чаще отдают предпочтение именно жидкостной системе. Отлично подойдет, как охлаждение видеокарты GTX-класса и схожих моделей.

Процесс работы

Вообще, какая бы то ни была система охлаждения, используется один общий принцип - тепло от более горячего тела переносится к более холодному. Первым выступает видеокарта или процессор, вторым - радиатор. Рано или поздно происходит прогрев охлаждаемого компонента до температуры радиатора. В этом случае их температуры становятся равны, а отвод тепла прекращается, что может вызвать перегрев.

Чтобы не случилось перегрева компонента, организуется подвод охлаждающего вещества. Его принято называть хладагентом или теплоносителем. В активной системе, которая выполняет, например, охлаждение видеокарты R9 (да и многих других), хладагентом является воздух. В других системах может применяться газ или жидкость.

Понятное дело, что в обычной комнате воздуха достаточно для нормального охлаждения. Однако серверные комнаты этим похвастаться не могут. В небольшом помещении собрано огромное количество техники, которая греется, поэтому приходится осуществлять дополнительную вентиляцию.

Существует ряд механизмов отвода тепла от нагреваемого объекта.

  • Теплопроводность. Способность вещества проводить тепло внутри своего объема. Самый распространенный механизм, используемый в современных системах охлаждения. В этом случае создается контакт некого вещества с компонентом, который подвергается охлаждению. Как несложно догадаться, лучшим теплопроводником являются металлы. На основе их изготавливаются теплообменники и радиаторы кулеров. Лучше всего проводимость обеспечивается серебром, на втором месте - медь, а затем - алюминий. Чаще всего производители применяют медь. Алюминий используется в самых дешевых системах охлаждениях.
  • Конвективный теплообмен с хладагентом. Для обеспечения механизма необходимо обеспечить хорошую циркуляцию воздуха внутри кейса. Поэтому рекомендуется использовать свободные системные блоки, в которых можно на удалении друг от друга располагать компоненты. Нежелательно размещать кейс рядом с источниками тепла.
  • Механизм, показатели которого ничтожны в системах охлаждения.

Обратная сторона медали

Прочитав выше представленный материал, пользователь подумает: сложного ничего нет - достаточно взять побольше радиатор, да организовать хороший поток воздуха. Это, конечно, все так. Но есть еще два фактора: стоимость и шум. Цена на системы охлаждения растет с развитием графических ускорителей, которым требуется все больше энергии. В результате этого растет и тепловыделение. Как несложно догадаться, чтобы отводить все тепло, нужны более габаритные радиаторы и целый набор вентиляторов. Чем больше система охлаждения, тем больше необходимо материалов для ее изготовления. От этого напрямую зависит ее цена.

Как правило, имеют алюминиевые радиаторы и один вентилятор. Такие системы работают довольно эффективно, но создают много шума. Конечно, более дорогие модели получают более эффективную систему, которая может похвастаться тихой работой, а ведь именно от этого зависит комфорт пользователя.

Наиболее бесшумно работает жидкостное охлаждение. Однако оно стоит довольно дорого, поэтому его установка целесообразна лишь в дорогие системы. Со временем такие системы, конечно же, будут получать большее распространение и доступную стоимость. Возможно, даже смогут вытеснить привычные кулеры на второй план. И все же, говорить об этом пока рановато. Поэтому рассмотрим самые интересные системы охлаждения, которые заслужили популярность среди пользователей.

Aerocool VM-102

Начнем, пожалуй, с модели, которая предназначена для бюджетного сегмента видеокарт с низким потреблением и тепловыделением. Представляет он собой массивный радиатор, основой которого является алюминий. Отдельным слоем присутствует и медь для более эффективного охлаждения. Имеются две трубки. Конечно, охладить игровую видеокарту, несмотря на свою массивность, радиатор не сможет. А вот с низшим классом адаптеров неплохо справляется, обеспечивая комфортную работу в тишине. Перед приобретением следует убедиться в том, что он влезет в кейс, и не будет мешать другим компонентам.

Arctic Cooling NV Silencer 5 rev.2.0

Перейдем к более эффективным системам. Arctic Cooling NV разработан компанией из Швейцарии, которая славится тихими и качественными кулерами. Модель появилась в продаже довольно давно, и позиционировалась в качестве решения для GT. Изначально предполагалось, что будет использоваться только с продукцией "зеленых". Однако пользователи выяснили, что Arctic Cooling NV отлично крепится и на многие адаптеры от AMD.

Выполнена система довольно типично. В основании используется медь, на которой размещены ребра радиатора из алюминия. Корпус воздуховода изготовлен из пластика. Выводить теплый воздух за пределы кейса приходится довольно большому кулеру. Arctic Cooling NV обеспечивает довольно неплохое охлаждение, но, как и многие собратья, не выделяется тихой работой.

Arctic Cooling Accelero X2

Достаточно оригинальное решение для видеокарт Radeon, а именно серии X1800-X1950. В качестве основания используется тонкая медная пластинка, от которой отходит две трубки. Они обеспечивают большую эффективность при охлаждении. из алюминия. Все это спрятано под пластиковым корпусом. На лицевой стороне расположен вентилятор турбинного типа. Существенным отличием от линейки Silencer является то, что Accelero не выводит воздух за пределы корпуса, а рассеивает его внутри.

Система охлаждения работает очень тихо даже на максимальных оборотах вентилятора. Неплохо кулер справляется и с отводом тепла от платы. Наверное, поэтому продукция швейцарской компании пользуется таким спросом у именитых производителей видеокарт.

Revoltec Graphic Freezer PRO

Габаритная и мощная система охлаждения. Основание выполнено из меди. От него отходит две трубки, которые призваны выводить тепло на радиатор, изготовленный из алюминия. Кожух выполнен из пластика, а в центре располагается большой вентилятор, который призван на огромных оборотах обдувать плату. Отлично охлаждает GeForce 7900 GS, но не способен справиться с X1950 XTX. На минимальных нагрузках работает довольно тихо, что обеспечивает комфортную работу в тишине. При серьезных нагрузках звук кулера становится очень даже громким. Особенно это заметно, если использовать систему охлаждения с видеокартами, у которых высокое тепловыделение.

Thermaltake Schooner

Внешний вид модели напоминает типичную пассивную систему охлаждения. Однако Thermaltake Schooner имеет некоторые особенность. От радиатора выходят две тепловые трубки, на конце которых есть небольшая Такая конструкция обеспечивает лучший вывод тепла в плохо вентилируемом кейсе. Также, стоит отметить, сборку, которая предусматривает соединение тепловых трубок специальными пластинами. Работает система следующим образом: трубки забирают тепло, передают его на медную пластину и только после этого на главный радиатор. По всей видимости, многоступенчатая конструкция, позволяет добиться наибольшей эффективности. Само собой, отличается тихой работой.

Zalman VF700-Cu

Одна из самых известных систем охлаждения, которая получила массу копий от китайских разработчиков. Уже корпус привлекает внимание покупателя. Выполнен он в необычной форме, которая нацелена не столь на красоту, сколько на эффективность. Радиатор представлен медными ребрами, которые отходят от центра к краям. Внешне он напоминает веер. Обдувается система довольно большим вентилятором. Несмотря на год выпуска, со счетов ее списывать рано. Неплохо охлаждает даже адаптеры с высоким тепловыделением. Отличается довольно низким уровнем шума. Неплохая сборка и низкая цена делает ее главным претендентом для приобретения в бюджетном сегменте.



Понравилась статья? Поделиться с друзьями: