Параллельные вычисления какую программу написать. Методы параллельных вычислений. Вот некоторые примеры ускорений

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

  • Введение
  • 1. Актуальность темы
  • 2. Увеличение количества ядер
  • 3. Технология NVIDIA CUDA
  • 4. Разница между CPU и GPU
  • Заключение
  • Введение
  • Распараллеливании вычислений - это разделение больших задач на более маленькие, которые могут выполняться одновременно. Обычно для параллельных вычислений требуются некоторые координированные действия. Параллельные вычисления бывают нескольких форм (на уровне инструкций, битов, данных, задач). Параллельные вычисления находили своё применение на протяжении многих лет в основном в высокопроизводительных вычислениях. Но ситуация в последнее время изменилась. Появился спрос на такие вычисление из-за физических ограничений роста тактовой частоты процессора. Параллельные вычисления стали доминирующей идеей в архитектуре компьютера. Она приобрела форму многоядерных процессоров.
  • Использование параллельных вычислительных систем обусловлено стратегическим направлениям развития в компьютерной индустрии. Главным обстоятельством послужило не только ограничение возможностей быстродействия машин, основанных на последовательной логике, сколь и наличием задач, для которых наличие вычислительной техники не является ещё достаточным. К задачам данной категории можно отнести моделирование динамических процессов.
  • Появление процессоров с несколькими ядрами явилось скачком развития эффективных супервычислений, которые могут похвастаться более высокими показателями производительность/стоимость, по сравнению с системами на базе супер ЭВМ. Использование многоядерных процессоров даёт гибкую возможность, в частности варьирования конфигураций, а также масштабирования мощности в вычислительных системах - начиная от PC, серверов, рабочих станций и заканчивая кластерными системами.
  • 1. Актуальность темы
  • В последние годы появилось большое количество дешевых кластерных параллельных вычислительных систем, которые привели к быстрому развитию параллельных вычислительных технологий, в том числе и в области высокопроизводительных вычислений. Большинство основных производителей микропроцессоров стали переходить на многоядерные архитектуры, что повлияло на изменение ситуации в области параллельных вычислительных технологий. Изменение аппаратной базы влечёт за собой изменение построений параллельных алгоритмов. Для реализации в многоядерных архитектурах вычислительных нужны новые параллельные алгоритмы, учитывающих новые технологии. Эффективность использования вычислительных ресурсов будет зависеть от качества собственно параллельных приложений и специализированных библиотек, ориентированных на многоядерные архитектуры.
  • Применение высокопроизводительной техники в моделировании реальных технических, экономических, и других процессов, описываемых системами обыкновенных дифференциальных уравнений большой размерности, не только оправдано, но и необходимо. Распараллеливании вычислений в многопроцессорных и параллельных структурах является эффективным способов повышения производительности. Так что, применение параллельных вычислительных систем довольно важное направление развития вычислительной техники.

2. Увеличение количества ядер

Первым процессором для массового использования был POWER4 с двумя ядрами PowerPC на одном кристалле. Выпущен компанией IBM в 2001 году.

Производители процессоров Intel, AMD, IBM, ARM признали увеличение число ядер как одно из приоритетных направлений увеличения производительности.

В 2011 году выпустили в производство 8-ядерные процессоры для домашних PC, и 16-ядерные для серверных систем.

Имеются разработки процессоров с большим количеством ядер (более 20), которые нашли применение в специфических устройствах.

2-х ядерные процессоры существовали ранее, например IBM PowerPC-970MP (G5Н). Но такие процессоры применялись в узком круге специализированных задач.

В апреле 2005 года AMD представила 2-ядерный процессор Opteron. архитектура AMD64. предназначен для серверов. В мае 2005 года Intel представила процессор Pentium D. Архитектуры x86-64. Стал первым 2-х ядерным процессором для домашних PC.

В марте 2010 года AMD представила 12-ядерные серийные серверные процессоры Opteron 6100 (архитектура x86/x86-64).

В августе 2011 года AMD представила 16-ядерные серийные серверные процессоры Opteron серии 6200. Процессор Interlagos в одном корпусе содержит два 8-ядерных (4-модульных) чипа и является совместимым с платформой AMD Opteron серии 6100 (Socket G34).

3. Технология NVIDIA CUDA

Большое количество параллельных вычислений связано с трёхмерными играми. Параллельные векторные вычисления на универсальных устройствах с многоядерными процессорами используются в 3D-графике, достигая высокой пиковой производительности. Универсальным процессорам это не под силу. Максимальная скорость достигается только в ряде удобных задач, имея некоторые ограничения. Но всё равно такие устройства широко применяются в сферах, где изначально не предназначались. Например, процессор Cell, разработки альянса Sony-Toshiba-IBM в игровой приставке Sony PlayStation 3, или, современные видеокарты от компаний NVIDIA и AMD.

Ещё несколько лет назад начали появляться технологии неграфических расчётов общего назначения GPGPU для 3D видеоускорителей. Современные видеочипы имеют сотни математических исполнительных блоков, такая мощь может помочь для значительного ускорения множества вычислительно интенсивных приложений. Нынешние поколения GPU имеют гибкую архитектуру, которая вместе с программно-аппаратными архитектурами и высокоуровневыми языками даёт возможность делать их намного более доступными.

Появление достаточно быстрых и гибких шейдерных программ заинтересовало разработчиков создать GPGPU, которые способны выполнять современные видеочипы. Разработчики захотели на GPU рассчитывать не только изображения в игровых и 3D приложениях, но и применять в других областях параллельных вычислений. Для этого использовали API графических библиотек OpenGL и Direct3D. Данные в видеочип передавались в качестве текстур, расчётные программы помещались в виде шейдеров. Главным недостатком такого способа является значительная сложность программирования, низкий обмен данными между GPU и CPU, и некоторые другие ограничения.

Ведущие производители видеочипов NVIDIA и AMD представили платформы для параллельных вычислений - CUDA и CTM, соответственно. В видеокартах появилась аппаратная поддержка прямого доступа к вычислительным ресурсам. CUDA является расширением языка программирования С. CTM более похож на виртуальную машину, которая выполняет только ассемблерный код. Обе платформы убрали ограничениz предыдущих версий GPGPU, которые использовали традиционный графический конвейер, ну и конечно графические библиотеки Direct3D и Open GL.

OpenGL является более портируемой, а также универсальной из-за своей открытости кода. Но она не позволят использовать тот же код на чипах разных производителе. У таких методов много недостатков, они не удобные, и обладают малой гибкостью. А также они не позволяют использовать специфические возможности некоторых видеокарт, например, быстрая общая память.

Именно это постигнуло компанию NVIDIA выпустить платформу CUDA -- C-подобный язык программирования, наделённый своим компилятором, а также имеющий в наборе библиотеками для вычислений на GPU. Написание хорошего кода для видеочипов очень не простое занятие, но CUDA даёт больше контроля над аппаратными средствами видеокарты. CUDA появилась с видеокарт серии 8. Появилась CUDA версии 2.0, которая поддерживает расчёты с двойной точность в 32- и 64- битных ОС Windows, Linux, MacOS X.

4. Разница между CPU и GPU

Рост тактовой частоты закончилось из-за высокого энергопотребления. Увеличение производительности происходит за счёт увеличения кол-ва ядер на одном чипе. На данный момент для домашних пользователей продаются процессоры до восьми ядер, и количеством потоков до 16. В таких процессорах каждое ядро работает отдельно.

Специальные векторные возможности (инструкции SSE) для 4-х компонентных (одинарная точность с плавающей точкой) и 2-х компонентных (двойная точность) векторов появились в универсальных процессорах из-за возникновения высоких требований приложений, работающие с графикой. Поэтому применение GPU является более выгодным, т.к. они заточены изначально под такие задачи.

В чипах NVIDIA основной блок - это мультипроцессор с 8-10 ядрами и около сотней ALU с несколькими тысячами регистров и большой общей памятью. Видеокарта имеет глобальную память с доступом из всех мультипроцессоров, локальная память в каждом мультипроцессоре, а также имеется память для констант.

В GPU ядра являются SIMD (одиночный поток команд, множество потоков данных) ядрами. Эти ядра выполняют одни и те же инструкции одновременно. Это и есть стиль программирования графических алгоритмов. Он специфичный, но позволяет увеличить кол-во вычислительных блоков за счёт своей простоты.

Основные различия между архитектурами (GPU и CPU): ядра CPU исполняют один поток последовательных инструкций с максимальной производительностью, GPU исполняет большое число параллельно выполняемых потоков инструкций. Универсальные процессоры нацелены на достижение высокой производительности одного потока команд, обрабатывающие числа с плавающей точкой и без. Доступ к памяти случайный.

Политика разработчиков CPU: добиться выполнения большего числа инструкций параллельно, для увеличения производительности. Поэтому, начиная с процессоров Intel Pentium, появилась технология суперскалярного выполнения, которая представляет собой выполнение 2-х инструкций за такт, а процессор Pentium Pro отличился внеочередным выполнением инструкций.

У видеочипов работа более простая и распараллелена изначально. Чип принимает группу полигонов, все необходимые операции, и выдаёт пиксели. Обработка полигонов и пикселей независима независимо друг от друга. Поэтому в GPU такое большое кол-во процессоров. Также современные GPU способны выполнить больше одной инструкции за такт.

Другое отличие CPU от GPU: принцип доступа к памяти. В GPU Он связный и предсказуемы, т.к. если считались текстуры, значит через некоторое время придёт очередь соседних текстур. Поэтому организация памяти у видеокарты и центрального процессора разные. И видеочипу по этой причине не надо кэш-память большого размера, а для текстур требуются лишь около 128-256 кБ.

Работа с памятью также различная. CPU имеют встроенные контроллеры памяти, у GPU обычно их по несколько, вплоть до восьми 64-бит каналов. Кроме того применяется очень быстрая память, следовательно, пропускная способность памяти выше, что является плюсом для параллельных расчётов, оперирующие с огромными потоками данных.

В CPU большое кол-во транзисторов уходит на буферы команд, аппаратное предсказание ветвления, огромные объёмы кэш-памяти. Все эти блоки нужны для ускорения немногочисленных потоков команд. В GPU транзисторы идут на массивы исполнительных блоков, разделяемую память малого объёма, управляющие потоками блоки, контроллеры памяти. Всё это не ускоряет выполнение отдельных потоков, но позволяет обрабатывать их в огромном количестве одновременно.

Кэширование. CPU использует кэш для уменьшения задержек доступа к памяти, следствие чего, происходит увеличение производительности. GPU использует кэш для увеличения пропускной способности. CPU снижает задержки доступа к памяти за счёт большого кэша и предсказания ветвлений кода. Эти аппаратные части являются большими ни чипе, следовательно, они потребляют много энергии. GPU решают проблему задержки доступа к памяти другим способом: исполнение тысяч потоков одновременно. Когда один поток ожидает данные, другой поток выполняет вычисления без ожидания и задержек.

В общем можно сделать следующий вывод: видеочипы предназначены для параллельных вычислений с большим объёмом данных и большим количество арифметических операций.

5. Первое применение расчётов на графических ускорителях

История применения чипов для математических расчётов началось давно. Самые первые попытки были примитивными и использовали некоторые функции из Z-буферизации и растеризации. Но с появлением шейдеров началось ускорение. В 2003г. на SIGGRAPH появилась новая секция под вычисления, и она получила GPGPU.

BrookGPU. Известный компилятор языка программирования Brook. Является потоковым. Был специально разработан для вычислений на GPU. Разработчики использовали API: Direct3D или OpenGL. Это существенной ограничивало применения GPU, т.к. шейдеры и текстуры применялись в 3D графике, а специалисты по параллельному программированию ничего знать не обязаны. Они используют тока потоки и ядра. Brook смог немного помочь в этой задачи. Расширения к языку С помогли скрыть от программистов трёхмерный API, и предоставить видеочип в качестве параллельного сопроцессора. Компилятор компилировал код и привязывал к библиотеке DirectX, OpenGL или x86.

6. Области применения параллельных расчётов на графических ускорителях

Приведём усреднённые цифры прироста производительности вычислений, полученные исследователями по всему миру. При переходе на GPU прирост производительности составляет в среднем в 5-30 раз, а в некоторых примерах доходит и до 100 раз (как правило это код, который непригоден для расчётов при помощи SEE.

Вот некоторые примеры ускорений:

· Флуоресцентная микроскопия - в 12 раз;

· Молекулярная динамика - в 8-16 раз;

· Электростатика (прямое и многоуровневое суммирование Кулона) - в 40-120 раз и 7 раз.

ядро процессор графический

Заключение

В реферате удалось рассмотреть параллельные вычисления на многоядерных процессорах, а также технологиях CUDA и CTM. Были рассмотрены разница между CPU и GPU, какие были сложности применения видеокарт в параллельных вычислениях без технологии CUDA, рассмотрены области применения.

В реферате не было рассмотрело применение параллельных вычислений в центральных процессорах с интегрированным видеоядром. Это процессоры фирмы AMD серии А (AMD A10, AMD A8, AMD A6, AMD A4) и процессоры фирмы Intel серии i3/i5/i7 со встроенным видеоядром HD Graphics.

Список использованной литературы

1. Сайт ixbt.com, владелец Byrds Research and Publishing, Ltd

2. Сайт wikipedia.org, владелец Фонд Викимедиа

3. Сайт nvidia.ru, владелец NVIDIA corporation

Размещено на Allbest.ru

...

Подобные документы

    Пакетный метод как основной способ выполнения коммуникационных операций, его содержание и предъявляемые требования. Оценка трудоемкости операции передачи данных между двумя узлами кластера. Этапы разработки параллельных алгоритмов (распараллеливания).

    презентация , добавлен 10.02.2014

    Знакомство с историей развития многопроцессорных комплексов и параллельных вычислений. Персональные компьютеры как распространенные однопроцессорные системы на платформе Intel или AMD, работающие под управлением однопользовательских операционных систем.

    презентация , добавлен 22.02.2016

    Классификация параллельных вычислительных систем. Существенные понятия и компоненты параллельных компьютеров, их компоненты. Особенности классификаций Хендера, Хокни, Флинна, Шора. Системы с разделяемой и локальной памятью. Способы разделения памяти.

    курсовая работа , добавлен 18.07.2012

    Математическая основа параллельных вычислений. Свойства Parallel Computing Toolbox. Разработка параллельных приложений в Matlab. Примеры программирования параллельных задач. Вычисление определенного интеграла. Последовательное и параллельное перемножение.

    курсовая работа , добавлен 15.12.2010

    Развитие концепций и возможностей ОС. Параллельные компьютерные системы и особенности их ОС. Симметричные и асимметричные мультипроцессорные системы. Виды серверов в клиент-серверных системах. ОС для облачных вычислений. Кластерные вычислительные системы.

    лекция , добавлен 24.01.2014

    Технология разработки параллельных программ для многопроцессорных вычислительных систем с общей памятью. Синтаксис, семантика и структура модели OpenMP: директивы, процедуры и переменные окружения. Распараллеливание по данным и операциям, синхронизация.

    презентация , добавлен 10.02.2014

    Параллельные вычислительные системы, их общая характеристика и функциональные особенности, оценка возможностей, внутренняя структура и взаимосвязь элементов, типы: одно- и многопроцессорные. Параллельная форма алгоритма, его представление и реализация.

    контрольная работа , добавлен 02.06.2014

    Достоинства многопроцессорных систем. Создание программы, реализующей работу мультипроцессорной системы с общей памятью по обработке различного количества заявок, а также различного количества процессоров. Модели вычислений на векторных и матричных ЭВМ.

    курсовая работа , добавлен 21.06.2013

    Абстрактные модели и способы параллельной обработки данных, допустимая погрешность вычислений. Понятие параллельного процесса, их синхронизация и гранулы распараллеливания, определение закона Амдаля. Архитектура многопроцессорных вычислительных систем.

    дипломная работа , добавлен 09.09.2010

    Однопроцессорные вычислительные системы не справляются с решением военно-прикладных задач в реальном времени, поэтому для повышения производительности вычислительных систем военного назначения используются многопроцессорные вычислительные системы (МВС).

Существуют различные способы реализации параллельных вычислений. Например, каждый вычислительный процесс может быть реализован в виде процесса операционной системы , либо же вычислительные процессы могут представлять собой набор потоков выполнения внутри одного процесса ОС. Параллельные программы могут физически исполняться либо последовательно на единственном процессоре - перемежая по очереди шаги выполнения каждого вычислительного процесса, либо параллельно - выделяя каждому вычислительному процессу один или несколько процессоров (находящихся рядом или распределённых в компьютерную сеть).

Основная сложность при проектировании параллельных программ - обеспечить правильную последовательность взаимодействий между различными вычислительными процессами, а также координацию ресурсов, разделяемых между процессами.

Способы синхронизации параллельного взаимодействия

В некоторых параллельных системах программирования передача данных между компонентами скрыта от программиста (например, с помощью механизма обещаний), тогда как в других она должна указываться явно. Явные взаимодействия могут быть разделены на два типа:

Параллельные системы, основанные на обмене сообщениями, зачастую более просты для понимания, чем системы с разделяемой памятью, и обычно рассматриваются как более совершенный метод параллельного программирования. Существует большой выбор математических теорий для изучения и анализа систем с передачей сообщений, включая модель акторов и различные виды исчислений процессов . Обмен сообщениями может быть эффективно реализован на симметричных мультипроцессорах как с разделяемой когерентной памятью, так и без неё.

У параллелизма с распределенной памятью и с передачей сообщений разные характеристики производительности. Обычно (но не всегда), накладные расходы памяти на процесс и времени на переключение задач у систем с передачей сообщений ниже, однако передача самих сообщений более накладна, чем вызовы процедур. Эти различия часто перекрываются другими факторами, влияющими на производительность.

Разумеется в такой системе можно также использовать и исключительно метод передачи сообщений, то есть запустить на каждом процессоре каждого узла отдельный процесс. В этом случае количество процессов (и потоков) будет равно количеству процессоров на всех узлах. Этот способ проще (в параллельной программе надо только увеличить количество процессов), но является менее эффективным, так как процессоры одного и того же узла будут обмениваться друг с другом сообщениями, словно они находятся на разных машинах .

Типичные задачи, допускающие параллельные вычисления

  • map - выполнение одной и той же функции над каждым элементом массива входных данных, с получением равного по мощности массива результатов вычисления
  • reduce - выполнение одной и той же функции для добавления вклада каждого элемента входных данных в одно итоговое значение

Программные инструменты параллелизма

  • OpenMP - стандарт интерфейса приложений для параллельных систем с общей памятью.
  • POSIX Threads - стандарт реализации потоков (нитей) выполнения.
  • Windows API - многопоточные приложения для C++.
  • PVM (Parallel Virtual Machine) позволяет объединить разнородный (но связанный сетью) набор компьютеров в общий вычислительный ресурс.
  • MPI (Message Passing Interface) - стандарт систем передачи сообщений между параллельно исполняемыми процессами.

См. также

Напишите отзыв о статье "Параллельные вычисления"

Литература

  • Словарь по кибернетике / Под редакцией академика В. С. Михалевича . - 2-е. - Киев: Главная редакция Украинской Советской Энциклопедии имени М. П. Бажана, 1989. - 751 с. - (С48). - 50 000 экз. - ISBN 5-88500-008-5 .
  • . - IBM RedBook, 1999. - 238 с. (англ.)
  • Воеводин В. В., Воеводин Вл. В. Параллельные вычисления. - СПб: БХВ-Петербург, 2002. - 608 с. - ISBN 5-94157-160-7 .
  • Оленев Н. Н. . - М .: ВЦ РАН, 2005. - 80 с. - ISBN 5201098320 .

Примечания

Ссылки

  • (англ.)
  • (англ.)

Отрывок, характеризующий Параллельные вычисления

Дух войска – есть множитель на массу, дающий произведение силы. Определить и выразить значение духа войска, этого неизвестного множителя, есть задача науки.
Задача эта возможна только тогда, когда мы перестанем произвольно подставлять вместо значения всего неизвестного Х те условия, при которых проявляется сила, как то: распоряжения полководца, вооружение и т. д., принимая их за значение множителя, а признаем это неизвестное во всей его цельности, то есть как большее или меньшее желание драться и подвергать себя опасности. Тогда только, выражая уравнениями известные исторические факты, из сравнения относительного значения этого неизвестного можно надеяться на определение самого неизвестного.
Десять человек, батальонов или дивизий, сражаясь с пятнадцатью человеками, батальонами или дивизиями, победили пятнадцать, то есть убили и забрали в плен всех без остатка и сами потеряли четыре; стало быть, уничтожились с одной стороны четыре, с другой стороны пятнадцать. Следовательно, четыре были равны пятнадцати, и, следовательно, 4а:=15у. Следовательно, ж: г/==15:4. Уравнение это не дает значения неизвестного, но оно дает отношение между двумя неизвестными. И из подведения под таковые уравнения исторических различно взятых единиц (сражений, кампаний, периодов войн) получатся ряды чисел, в которых должны существовать и могут быть открыты законы.
Тактическое правило о том, что надо действовать массами при наступлении и разрозненно при отступлении, бессознательно подтверждает только ту истину, что сила войска зависит от его духа. Для того чтобы вести людей под ядра, нужно больше дисциплины, достигаемой только движением в массах, чем для того, чтобы отбиваться от нападающих. Но правило это, при котором упускается из вида дух войска, беспрестанно оказывается неверным и в особенности поразительно противоречит действительности там, где является сильный подъем или упадок духа войска, – во всех народных войнах.
Французы, отступая в 1812 м году, хотя и должны бы защищаться отдельно, по тактике, жмутся в кучу, потому что дух войска упал так, что только масса сдерживает войско вместе. Русские, напротив, по тактике должны бы были нападать массой, на деле же раздробляются, потому что дух поднят так, что отдельные лица бьют без приказания французов и не нуждаются в принуждении для того, чтобы подвергать себя трудам и опасностям.

Так называемая партизанская война началась со вступления неприятеля в Смоленск.
Прежде чем партизанская война была официально принята нашим правительством, уже тысячи людей неприятельской армии – отсталые мародеры, фуражиры – были истреблены казаками и мужиками, побивавшими этих людей так же бессознательно, как бессознательно собаки загрызают забеглую бешеную собаку. Денис Давыдов своим русским чутьем первый понял значение той страшной дубины, которая, не спрашивая правил военного искусства, уничтожала французов, и ему принадлежит слава первого шага для узаконения этого приема войны.
24 го августа был учрежден первый партизанский отряд Давыдова, и вслед за его отрядом стали учреждаться другие. Чем дальше подвигалась кампания, тем более увеличивалось число этих отрядов.
Партизаны уничтожали Великую армию по частям. Они подбирали те отпадавшие листья, которые сами собою сыпались с иссохшего дерева – французского войска, и иногда трясли это дерево. В октябре, в то время как французы бежали к Смоленску, этих партий различных величин и характеров были сотни. Были партии, перенимавшие все приемы армии, с пехотой, артиллерией, штабами, с удобствами жизни; были одни казачьи, кавалерийские; были мелкие, сборные, пешие и конные, были мужицкие и помещичьи, никому не известные. Был дьячок начальником партии, взявший в месяц несколько сот пленных. Была старостиха Василиса, побившая сотни французов.
Последние числа октября было время самого разгара партизанской войны. Тот первый период этой войны, во время которого партизаны, сами удивляясь своей дерзости, боялись всякую минуту быть пойманными и окруженными французами и, не расседлывая и почти не слезая с лошадей, прятались по лесам, ожидая всякую минуту погони, – уже прошел. Теперь уже война эта определилась, всем стало ясно, что можно было предпринять с французами и чего нельзя было предпринимать. Теперь уже только те начальники отрядов, которые с штабами, по правилам ходили вдали от французов, считали еще многое невозможным. Мелкие же партизаны, давно уже начавшие свое дело и близко высматривавшие французов, считали возможным то, о чем не смели и думать начальники больших отрядов. Казаки же и мужики, лазившие между французами, считали, что теперь уже все было возможно.
22 го октября Денисов, бывший одним из партизанов, находился с своей партией в самом разгаре партизанской страсти. С утра он с своей партией был на ходу. Он целый день по лесам, примыкавшим к большой дороге, следил за большим французским транспортом кавалерийских вещей и русских пленных, отделившимся от других войск и под сильным прикрытием, как это было известно от лазутчиков и пленных, направлявшимся к Смоленску. Про этот транспорт было известно не только Денисову и Долохову (тоже партизану с небольшой партией), ходившему близко от Денисова, но и начальникам больших отрядов с штабами: все знали про этот транспорт и, как говорил Денисов, точили на него зубы. Двое из этих больших отрядных начальников – один поляк, другой немец – почти в одно и то же время прислали Денисову приглашение присоединиться каждый к своему отряду, с тем чтобы напасть на транспорт.
– Нет, бг"ат, я сам с усам, – сказал Денисов, прочтя эти бумаги, и написал немцу, что, несмотря на душевное желание, которое он имел служить под начальством столь доблестного и знаменитого генерала, он должен лишить себя этого счастья, потому что уже поступил под начальство генерала поляка. Генералу же поляку он написал то же самое, уведомляя его, что он уже поступил под начальство немца.
Распорядившись таким образом, Денисов намеревался, без донесения о том высшим начальникам, вместе с Долоховым атаковать и взять этот транспорт своими небольшими силами. Транспорт шел 22 октября от деревни Микулиной к деревне Шамшевой. С левой стороны дороги от Микулина к Шамшеву шли большие леса, местами подходившие к самой дороге, местами отдалявшиеся от дороги на версту и больше. По этим то лесам целый день, то углубляясь в середину их, то выезжая на опушку, ехал с партией Денисов, не выпуская из виду двигавшихся французов. С утра, недалеко от Микулина, там, где лес близко подходил к дороге, казаки из партии Денисова захватили две ставшие в грязи французские фуры с кавалерийскими седлами и увезли их в лес. С тех пор и до самого вечера партия, не нападая, следила за движением французов. Надо было, не испугав их, дать спокойно дойти до Шамшева и тогда, соединившись с Долоховым, который должен был к вечеру приехать на совещание к караулке в лесу (в версте от Шамшева), на рассвете пасть с двух сторон как снег на голову и побить и забрать всех разом.
Позади, в двух верстах от Микулина, там, где лес подходил к самой дороге, было оставлено шесть казаков, которые должны были донести сейчас же, как только покажутся новые колонны французов.
Впереди Шамшева точно так же Долохов должен был исследовать дорогу, чтобы знать, на каком расстоянии есть еще другие французские войска. При транспорте предполагалось тысяча пятьсот человек. У Денисова было двести человек, у Долохова могло быть столько же. Но превосходство числа не останавливало Денисова. Одно только, что еще нужно было знать ему, это то, какие именно были эти войска; и для этой цели Денисову нужно было взять языка (то есть человека из неприятельской колонны). В утреннее нападение на фуры дело сделалось с такою поспешностью, что бывших при фурах французов всех перебили и захватили живым только мальчишку барабанщика, который был отсталый и ничего не мог сказать положительно о том, какие были войска в колонне.
Нападать другой раз Денисов считал опасным, чтобы не встревожить всю колонну, и потому он послал вперед в Шамшево бывшего при его партии мужика Тихона Щербатого – захватить, ежели можно, хоть одного из бывших там французских передовых квартиргеров.

Аннотация: Что заставляет менять образование, параллельные вычисления на стыке дисциплин, последовательные вычисления маскируют проблемы развития, необходимость учить решать задачи эффективно, причина многих трудностей - незнание структуры алгоритмов, возможные пути изменения ситуации

Известно, что освоение вычислительной техники параллельной архитектуры, в особенности молодыми специалистами, идет с большими трудностями. На наш взгляд, это связано с тем, что знакомство с параллельными вычислениями, как и образование в этой области в целом, начинается не с того, с чего надо бы начинать. К тому же то, с чего надо начинать, не рассказывается ни в каких курсах вообще.

Возможность быстрого решения задач на вычислительной технике параллельной архитектуры вынуждает пользователей изменять весь привычный стиль взаимодействия с компьютерами. По сравнению, например, с персональными компьютерами и рабочими станциями меняется практически все: применяются другие языки программирования, видоизменяется большинство алгоритмов, от пользователей требуется предоставление многочисленных нестандартных и трудно добываемых характеристик решаемых задач, интерфейс перестает быть дружественным и т.п. Важным является то обстоятельство, что неполнота учета новых условий работы может в значительной мере снизить эффективность использования новой и, к тому же, достаточно дорогой техники.

Надо заметить, что общий характер трудностей, сопровождающих развитие параллельных вычислений, в целом выглядит таким же, каким он был и во времена последовательных. Только для параллельных вычислений все трудности проявляются в более острой форме. Во многом из-за большей сложности самой предметной области . Но, возможно, главным образом вследствие того, что к началу активного внедрения вычислительных систем параллельной архитектуры в практику решения больших прикладных задач не был построен нужный теоретический фундамент и не был развит математический аппарат исследований. В конце концов, из-за этого оказался своевременно не подготовленным весь образовательный цикл в области параллельных вычислений, отголоски чего проявляются до сих пор. Отсюда непонимание многочисленных трудностей освоения современной вычислительной техники, пробелы в подготовке нужных специалистов и многое другое.

Образование в области параллельных вычислений базируется на трех дисциплинах: архитектура вычислительных систем, программирование и вычислительная математика . Если внимательно проанализировать содержание соответствующих курсов, то неизбежно приходить к выводу, что не только по отдельности, но даже все вместе они не обеспечивают в настоящее время достижение главной пользовательской цели - научиться эффективно решать большие задачи на больших вычислительных системах параллельной архитектуры. Конечно, в этих курсах дается немало полезных и нужных сведений. Однако многое, что необходимо знать согласно современному взгляду на параллельные вычисления, в них не дается. Это, в частности, связано с тем, что ряд важнейших и даже основополагающих фактов, методов и технологий решения больших задач на больших системах возник как результат исследований на стыке нескольких предметных областей . Такие результаты не укладываются в рамки традиционных дисциплин. Поэтому, как следствие, излагаемые в соответствующих курсах сведения оказываются недостаточными для формирования целостной системы знаний, ориентированной на грамотное построение параллельных вычислительных процессов.

Все образовательные курсы, так или иначе связанные с вычислительной техникой или ее использованием, можно разделить на две группы. В первой группе излагаются базовые сведения, во второй - специальные. Базовые сведения носят универсальный характер и слабо классифицируются по типам вычислительной техники. Сформировались они на основе знаний о последовательных машинах и последовательных вычислениях и с течением времени меняются мало. В рамках курса по программированию базовые сведения начинают читаться с первого или второго семестра, в рамках курса по численным методам примерно с третьего семестра. Специальные курсы, в том числе относящиеся к вычислительным системам параллельной архитектуры, начинают читаться довольно поздно. Как правило, не ранее седьмого или даже девятого семестра.

На первый взгляд, все выглядит логично: сначала даются базовые сведения, затем специальные. Однако на практике разделение сведений на базовые и специальные оказывается весьма условным, поскольку важно только следующее: есть ли возможность получить нужные сведения в нужный момент или такой возможности нет и каков набор предлагаемых к изучению сведений.

Становление вычислительной математики имеет долгую историю. Но наиболее бурное ее развитие связано с электронными вычислительными машинами. Эти машины возникли как инструмент проведения последовательных вычислений. Интенсивно развиваясь, они по существу оставались последовательными в течение нескольких десятилетий. Для последовательных машин довольно рано стали создаваться машинно-независимые языки программирования. Для математиков и разработчиков прикладного программного обеспечения появление таких языков открывало заманчивую перспективу. Не нужно было вникать в устройство вычислительных машин, так как языки программирования по существу мало чем отличались от языка математических описаний. Скорость реализации алгоритмов на последовательных машинах определялась, главным образом, числом выполняемых операций и почти не зависела от того, как внутренне устроены сами алгоритмы. Поэтому в разработке алгоритмов становились очевидными главные целевые функции их качества - минимизация числа выполняемых операций и устойчивость к влиянию ошибок округления. Никакие другие сведения об алгоритмах были просто не нужны для эффективного решения задач на последовательной технике.

Все это на долгие годы определило основное направление развития не только численных методов, но и всей вычислительной математики. На фоне недостаточного внимания к развитию вычислительной техники математиками не было вовремя замечено важное обстоятельство: количественные изменения в технике переходят уже в такие качественные, что общение с ней при помощи последовательных языков скоро должно стать невозможным. Это привело к серьезному разрыву между имеющимися знаниями в области алгоритмов и теми знаниями, которые необходимы для быстрого решения задач на новейшей вычислительной технике. Образовавшийся разрыв лежит в основе многих трудностей практического освоения современных вычислительных систем параллельной архитектуры.

Сейчас вычислительный мир, по крайней мере, мир больших вычислений изменился радикально. Он стал параллельным. На вычислительных системах параллельной архитектуры время решения задач принципиально зависит от того, какова внутренняя структура алгоритма и в каком порядке выполняются его операции . Возможность ускоренной реализации на параллельных системах достигается за счет того, что в них имеется достаточно большое число функциональных устройств, которые могут одновременно выполнять какие-то операции алгоритма. Но чтобы использовать эту возможность, необходимо получить новые сведения относительно структуры алгоритма на уровне связей между отдельными операциями. Более того, эти сведения нужно согласовывать со сведениями об архитектуре вычислительной системы.

О совместном анализе архитектуры систем и структуры алгоритмов почти ничего не говорится в образовательных курсах. Если об архитектурах вычислительных систем и параллельном программировании рассказывается хотя бы в специальных курсах, то обсуждение структур алгоритмов на уровне отдельных операций в настоящее время не входит ни в какие образовательные дисциплины. И это несмотря на то, что структуры алгоритмов обсуждаются в научной литературе в течение нескольких десятилетий, да и практика использования вычислительной техники параллельной архитектуры насчитывает не намного меньший период. Естественно, возник вопрос о том, что же делать дальше. Ответ на него уже был дан раньше, но его полезно и повторить.

До сих пор специалистов в области вычислительной математики учили, как решать задачи математически правильно. Теперь надо, к тому же, учить, как решать задачи эффективно на современной вычислительной технике .

О том, какие сведения в области структуры алгоритмов необходимо знать дополнительно, говорилось в приведенных лекциях. На основе этого материала можно разработать разные программы модернизации образовательных курсов в интересах параллельных вычислений . Наиболее эффективная модернизация связана с проведением согласованных изменений нескольких курсов. Одна из программ, рассчитанная на подготовку высококвалифицированных специалистов по решению больших задач на больших системах, может выглядеть следующим образом:

  • чтение на первых курсах трех-четырех лекций "Введение в параллельные вычисления";
  • введение в базовые циклы по математике и программированию начальных сведений о параллельных вычислениях;
  • существенная перестройка цикла лекций по численным методам с обязательным описанием информационной структуры каждого алгоритма;
  • организация практикума по параллельным вычислениям;
  • чтение специального курса " Параллельная структура алгоритмов";
  • чтение специального курса "Параллельные вычисления".

Эта программа в определенном смысле максимальная. Тем не менее, она вполне реальная. Безусловно, ее нельзя целиком реализовать в каждом вузе. Но на ее основе для каждого конкретного вуза можно сформировать свою собственную программу образования в области вычислительных наук.

Из первых двух пунктов в образовательный цикл можно вводить как любой из них, так и оба сразу. Важно лишь, чтобы обучающийся как можно раньше узнал, что существуют другие способы организации вычислительных процессов, а не только последовательное выполнение "операция за операцией", что на этих других способах строится самая мощная современная вычислительная техника, что только на такой технике удается решать крупные промышленные и научные задачи и т.д. Важно, в первую очередь , для того, чтобы как можно раньше обратить внимание обучающихся на необходимость критического отношения к философии последовательных вычислений. Ведь именно с этой философией им приходится сталкиваться на протяжении всего образования как в школе, так и в вузе. И именно эта философия мешает пониманию особенностей работы на вычислительной технике параллельной архитектуры.

Начальные сведения о параллельных вычислениях вполне уместно включить в курс программирования. В нем можно обсудить простейшую модель параллельной вычислительной системы , рассказать о параллельных процессах и их характеристиках. Здесь же полезно ввести абстрактную форму описания вычислительных алгоритмов. Причем совсем не обязательно приводить конкретные ее наполнения. Об этом лучше поговорить позднее при изучении численных методов. Можно начать разговор о параллельных формах алгоритмов и их использовании. Все сведения о параллельных вычислениях, на наш взгляд, можно изложить в курсе программирования в двух-трех лекциях. Хорошим полигоном для демонстрации параллелизма в алгоритмах является курс линейной алгебры. В нем достаточно рано появляются матричные операции и метод Гаусса для решения систем линейных алгебраических уравнений. На соответствующих алгоритмах даже "на пальцах" можно продемонстрировать и параллелизм вычислений, и быстрые алгоритмы и многое другое. На обсуждение новых сведений потребуется суммарно не более одной лекции.

Не стоит перегружать первое знакомство с параллельными вычислениями большим количеством деталей и серьезными результатами. Главная цель данного этапа - лишь вызвать интерес к этой тематике. Достаточно дать общее представление о параллелизме вычислений, параллельных формах, графах алгоритмов и характеристиках вычислительных процессов. Если все начальные сведения объединить в единый цикл "Введение в параллельные вычисления", то их можно рассказать за три-четыре лекции. Но подчеркнем еще раз - доводить эти сведения до обучающихся необходимо как можно раньше.

Материалы данных лекций убедительно демонстрируют, насколько важно хорошее знание графов алгоритмов и их параллельных форм для понимания тех проблем, с которыми приходится сталкиваться при решении задач на современных вычислительных системах параллельной архитектуры. Изложение сведений об этом наиболее естественно включить в курсы по вычислительной математике. Основной аргумент в пользу такого решения связан с тем, что информационная структура алгоритмов описывается в тех же самых индексных системах, в которых происходит изложение и численных методов. По большому счету, к существующему курсу численных методов нужно добавить только сведения о графах алгоритмов, наборах разверток для них и технологию использования всего этого. Безусловно, подготовка обновленных курсов требует определенного труда. Но совсем не обязательно обсуждать структуры алгоритмов в полном изложении. Достаточно это сделать лишь для их вычислительных ядер. Понятие о графах алгоритмов и технологию нужно изложить, скорее всего, в самом начале курса. Однако граф и развертки желательно давать для каждого алгоритма. В дополнение к сказанному заметим, что одни и те же численные методы читаются без изменения в течение многих лет, а сведения об их структурах нужно подготовить только один раз. И эти сведения заведомо будут использоваться многократно, причем в самых разных областях.

Одним из самых трудных в техническом отношении и менее всего проработанным с методологической точки зрения является вопрос об организации практикума по параллельным вычислениям. Конечно, для его проведения нужно иметь вычислительную технику параллельной архитектуры. Но во многих вузах такая техника уже давно стоит, а окончательного мнения, каким должен быть практикум, тем не менее, все равно нет.

Одна из очевидных целей практикума лежит на поверхности. Вычислительные системы параллельной архитектуры создаются для решения больших задач. Следовательно, за время прохождения практикума нужно хотя бы в какой-то мере научиться решать такие задачи. Вроде бы все ясно. В общем курсе программирования или в каких-то специальных курсах даются знания по конкретным языкам или системам параллельного программирования. Во время практикума раздаются конкретные задания. Программы составляются, пропускаются на вычислительной системе и результаты сравниваются с эталоном. Однако даже в такой простой схеме имеются узкие места. В самом деле, что считать результатом? При решении больших задач на больших системах основную трудность представляет не столько получение математически правильного результата , сколько достижение нужного уровня ускорения . А это означает, что во время прохождения практикума нужно ко всему прочему научиться правильно оценивать эффективность составленных программ.

Если конкретная программа не показывает нужных характеристик эффективности, то возникает вопрос о дальнейших действиях. В этой ситуации почти всегда приходится приступать к более детальному изучению структуры алгоритмов. Возможно, именно изучение структуры алгоритмов должно стать ключевым звеном практикума . Оно стало бы хорошим подспорьем знакомству со структурой алгоритмов в модернизированных курсах по численным методам. Но есть и более веские аргументы в пользу более близкого знакомства со структурой алгоритмов.

Один из аргументов связан с текущими проблемами. В последнее время в практике вычислений стали широко использоваться различные многопроцессорные системы с распределенной памятью. К ним относятся не только кластеры, но и неоднородные сети компьютеров, сети компьютеров, объединенных через Интернет , и др. Во всех подобных системах узким местом являются обмены информацией между процессорами. Для эффективной работы необходимо, чтобы каждый процессор выполнял достаточно много операций и обменивался с памятью других процессоров относительно небольшими порциями данных. Мы уже отмечали в лекциях, что для обеспечения такого режима счета, достаточно знать граф алгоритма и, по крайней мере, две независимые развертки . Другими словами, нужно знать структуру алгоритмов.

Другой аргумент связан с возможной перспективой развития вычислительной техники. Скорости решения больших задач приходится повышать сегодня и заведомо придется повышать в будущем. Как правило, основные надежды связываются с созданием на основе различных технологических достижений более скоростных универсальных систем. Но повышать скорость работы вычислительной техники можно и за счет ее специализации . Уже давно практикуется использование спецпроцессоров, осуществляющих очень быструю реализацию алгоритмов быстрого преобразования Фурье, обработки сигналов, матричных операций и т.п. А теперь вспомним гипотезу о типовых структурах. Если она верна, то в конкретных прикладных областях можно будет выделить наиболее часто используемые алгоритмы и для них тоже построить спецпроцессоры. Тем самым открывается путь создания специализированных вычислительных систем для быстрого и сверхбыстрого решения задач из заданной предметной области .

Основная трудность введения в практикум заданий, связанных с изучением структуры алгоритмов, является отсутствие в настоящий момент доступного и простого в использовании программного обеспечения для построения графов алгоритмов и проведения на их основе различных исследований. По существу есть только одна система, которая реализует подобные функции. Это система V-Ray, разработанная в Научно- исследовательском вычислительном центре МГУ. Она дает возможность для различных классов программ строить графы алгоритмов и изучать их параллельную структуру. Система V-Ray реализована на персональном компьютере и не зависит от целевого компьютера. Последнее обстоятельство исключительно важно для организации практикума, поскольку частый выход с мелкими задачами на большие вычислительные системы не очень реален даже для вузов с хорошим техническим оснащением. На персональных же компьютерах время освоения задач практикума практически неограниченно. В настоящее время V-Ray представляет сложную исследовательскую систему. Далеко не все ее функции нужны для организации практикума. Со временем система V-Ray станет доступной для широкого использования. Информацию о ней и ее возможностях можно получить

Параллельные вычислительные процессы и системы (Лекция 13)

Виды параллелизма

Параллельная обработка данных имеет две разновидности: конвейерность и собственно параллельность.

Параллельная обработка. Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени.

Конвейерная обработка. Что необходимо для сложения двух вещественных чисел, представленных в форме с плавающей запятой? Целое множество мелких операций таких, как сравнение порядков, выравнивание порядков, сложение мантисс, нормализация и т.п. Процессоры первых компьютеров выполняли все эти "микрооперации" для каждой пары аргументов последовательно одна за одной до тех пор, пока не доходили до окончательного результата, и лишь после этого переходили к обработке следующей пары слагаемых. Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получается очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций. Предположим, что в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени. Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обработает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или иначе говорят– ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находится первые пять пар аргументов, а весь набор из ста пар будет обработан за 5 + 99 = 104 единицы времени – ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).

Казалось бы, конвейерную обработку можно с успехом заменить обычным параллелизмом, для чего продублировать основное устройство столько раз, сколько ступеней конвейера предполагается выделить. Но, увеличив в пять раз число устройств, мы значительно увеличиваем как объем аппаратуры, так и ее стоимость.

Реализация параллельных систем

Производительность компьютеров росла экспоненциально, начиная с 1945 года и до настоящего момента (если брать средний показатель за каждые 10 лет). Компьютерная архитектура претерпела значительные изменения, пройдя путь от последовательной до параллельной.

Производительность компьютера непосредственно зависит от времени, требующегося на выполнение основных функций и количество этих основных операций, которые могут быть выполнены одновременно. Время выполнения одной простейшей инструкции в конечном итоге ограничено.

Несложно сделать вывод, что нельзя ограничиваться увеличением скорости лишь за счет тактовой частоты процессоров. Зависимость от процессоров в конечном итоге заводит в тупик. Другая стратегия в этой области – использование внутреннего параллелизма в чипе процессора. Но такая технология очень дорога. Современные суперкомпьютеры основываются в большей степени на идее использование большого количества относительно не дорогих уже имеющихся процессоров.

Это подразумевает и такие системы, как: суперкомпьютеры, оборудованные тысячами процессоров; сети рабочих станций; мультипроцессорные рабочие станции и т.д.

Мультикомпьютер – это некоторое количество машин фон Неймана (узлов) связанных между собой сетью. Каждый компьютер выполняет свою программу. Эти программы могут иметь доступ к локальной памяти и умеют посылать и получать сообщения через сеть. Сообщения, используемые для связи между компьютерами, эквивалентны операциям чтения или записи с удаленной памятью. В идеализированной сети время доставки сообщения между машинами не зависит от расстояния между узлами или сетевого трафика, но зависит от длины отправляемого письма.

Определяющий параметр модели мультикомпьютера – это то, что доступ к локальной (в том же узле) памяти менее дорог, чем доступы к удаленной (находящейся в другом узле) памяти. Т.е. операции чтения и записи менее дороги, чем отправление или получение сообщений. Следовательно, желательно, чтобы обращение к локальным данным было гораздо более частым, чем к удаленным данным. Это фундаментальное свойство программного обеспечения называется локальностью. Значение локальности зависит от отношения стоимости дистанционного доступа к локальному.

Другие модели машин. Рассмотрим важнейшие компьютерные архитектуры. Мультикомпьютер очень похож на то, что часто называют компьютером с распределенной памятью MIMD (Multiple Instruction Multiple Data ). MIMD означает, что каждый процессор может обрабатывать отдельный поток инструкций над его собственными локальными данными. Распределенная память означает, что память распределена между процессорами. Принципиальным отличием MIMD компьютера от мультикомпьютера – это то, что стоимость доставки сообщения между двумя узлами не зависит от местоположения узла и сетевого трафика. Основные представители этого класса: IBM SP, Intel Paragon , Thinking Machines CM 5, Cray T 3D , Meiko CS -2, и CUBE .


Другой класс суперкомпьютеров – мультипроцессор или MIMD компьютер с разделяемой памятью. В мультипроцессоре все процессоры делят доступ к общей памяти, обычно через шину или через иерархию шин. В идеализированной модели параллельной машины с произвольным доступом (PRAM) часто используют теоретически изучаемые параллельные алгоритмы, любой процессор может получить доступ к любому элементу памяти в одно и то же время. Такая архитектура обычно подразумевает некоторые специальные формы устройства памяти. Количество обращений к разделяемой памяти уменьшается за счет хранения копий часто используемых данных в кэше, связанном с каждым процессором.

Доступ к этому кэшу намного быстрее, чем доступ к разделяемой памяти, следовательно, локальность очень важна. Программы, разработанные для мультикомпьютеров, могут так же эффективно работать на мультипроцессорах, потому что разделяемая память позволяет эффективную реализацию передачи сообщений. Представители этого класса – Silicon Graphics Challenge, Sequent Symmetry и многие мультипроцессорные рабочие станции.

Более специализированный класс параллельных компьютеров – это SIMD (Single Instruction Miltiple Data) компьютеры. В SIMD машинах все процессоры оперируют с одним и тем же потоком инструкций над различными порциями данных. Этот подход может уменьшить сложность программного и аппаратного обеспечения, но это имеет смысл только для специализированных проблем, характеризуемых высокой степенью закономерности, например обработка изображений и определенные виды цифрового моделирования. Алгоритмы, применимые на мультикомпьютерах, не могут в общих чертах эффективно выполняться в SIMD компьютерах.

Нейровычислительные системы.

Нейровычислительное устройство – это система, функционирование которой в максимальной степени ориентировано на реализацию нейросетевых алгоритмов. Основное отличие нейрокомпьютеров от других вычислительных систем – это обеспечение высокого параллелизма вычислений за счет применения специализированного нейросетевого логического базиса или конкретных архитектурных решений. Использование возможности представления нейросетевых алгоритмов для реализации на нейросетевом логическом базисе является основной предпосылкой резкого увеличения производительности нейрокомпьютеров.

Сейчас разработки цифровых нейрокомпьютеров наиболее активно ведутся по следующим направлениям:

· программная эмуляция нейросетевых алгоритмов на основе использования обычных вычислительных средств и ППО по моделированию нейросетей;

· программно-аппаратная эмуляция нейросетей на основе стандартных вычислительных средств с подключаемым виртуальным нейросетевым блоком, выполняющим основные нейрооперации, и ППО, осуществляющим функции общего управления;

· аппаратная реализация нейронных сетей.

Несмотря на то, что наибольшего эффекта при реализации нейросетевых алгоритмов удается добиться лишь с использованием нейрокомпьютеров третьего направления, их широкое применение ограничивается высокой. Например, нейрокомпьютер Synaps1 – один из представителей нейрокомпьютеров третьего направления, имеет мультипроцессорную архитектуру, оригинальное построение подсистемы памяти, а для выполнения вычислительных операций использует сигнальные процессоры и специальные сигнальные матричные процессоры МА16. За счет этого производительность нейрокомпьютера составила порядка несколько миллиардов умножений и сложений в секунду. Программное обеспечение данной системы включает в себя ОС Synaps1 с библиотекой нейроалгоритмов, а также ППО: базовую библиотеку НС, компилятор языка программирования нейроалгоритмов (nAPL) (набор библиотечных функций для С++) и т.п. Прикладные исследования показали, что использование нейрокомпьютеров третьего направления позволяет повысить производительность обычных вычислительных систем как минимум на три порядка и моделировать НС с миллионами соединений. Так, например, Synaps1 позволяет моделировать нейросеть с 64 миллионами синапсов с использованием различных активационных функций.

Два класса компьютерных систем, которые иногда используют как параллельные компьютеры – это локальная сеть (LAN), в которой компьютеры, находящиеся в физической близости (например, то же строение), связываются быстрой сетью, и глобальная сеть (WAN), в которой соединены географически удаленные компьютеры. Хотя системы такого типа доставляют дополнительные проблемы, такие как безопасность, надежность, они могут быть рассмотрены для различных целей как мультикомпьютеры, хотя и с высокой стоимостью удаленного доступа.

Сложности использования параллельных систем

Гигантская производительность параллельных компьютеров и супер-ЭВМ с лихвой компенсируется сложностями их использования.

У вас есть программа и доступ, скажем, к 256-процессорному компьютеру. Что вы ожидаете? Да ясно что: вы вполне законно ожидаете, что программа будет выполняться в 256 раз быстрее, чем на одном процессоре. А вот как раз этого, скорее всего, и не будет.

Закон Амдала. Предположим, что в программе доля операций, которые нужно выполнять последовательно, равна f, где 0<=f <=1 (при этом доля понимается не по статическому числу строк кода, а по числу операций в процессе выполнения). Крайние случаи в значениях f соответствуют полностью параллельным (f = 0) и полностью последовательным (f = 1) программам. Тогда для того, чтобы оценить, какое ускорение S может быть получено на компьютере из "p" процессоров при данном значении f, можно воспользоваться законом Амдала: если 9/10 программы исполняется параллельно, а 1/10 по-прежнему последовательно, то ускорения более, чем в 10 раз получить в принципе невозможно вне зависимости от качества реализации параллельной части кода и числа используемых процессоров (10 получается только в том случае, когда время исполнения параллельной части равно 0).

Следствие закона Амдала. Для того, чтобы ускорить выполнение программы в q раз, необходимо ускорить не менее, чем в q раз не менее, чем (1-1/q ) -ю часть программы. Следовательно, если есть желание ускорить программу в 100 раз по сравнению с ее последовательным вариантом, то необходимо получить не меньшее ускорение не менее, чем для 99.99% кода!

Таким образом, заставить параллельную вычислительную систему работать с максимальной эффективностью на конкретной программе это задача не из простых, поскольку необходимо тщательное согласование структуры программ и алгоритмов с особенностями архитектуры параллельных вычислительных систем.

Программирование параллельных систем

Модель машины фон Неймана предполагает, что процессор выполняет последовательность инструкций. Инструкции могут определять в дополнение к различным арифметическим операциям адреса данных, которые надо прочитать/записать в памяти, и/или адрес следующей инструкции, которую надо выполнить. Пока возможно только программировать компьютер с точки зрения этой основной модели, этот метод для большинства целей недопустимо сложен из-за того, что мы должны следить за миллионами позиций памяти и организовать выполнение тысяч машинных инструкций. Следовательно, прикладывается модульная техника разработки, посредством которой сложные программы создаются из простых компонент, и компоненты структуры с точки зрения абстракций более высокого уровня (такие, как структуры данных, итерационные циклы и процедуры). Абстракции (например, процедуры) делают эксплуатацию модульности легче, допуская объекты, которыми должны управлять без беспокойства для их внутренней структуры. Так сделаны высокоуровневые языки, как, например, Fortran, C, Ada и Java , которые допускают разработку, выраженную с точки зрения этих абстракций, которые переводятся автоматически в выполняемый код. Параллельное программирование вводит дополнительные источники сложности: если мы должны запрограммировать на самом низком уровне, нам нужно не только увеличить количество выполняемых инструкций, но также управлять выполнением тысяч процессоров и координированием миллионов межпроцессорных взаимодействий. Следовательно, абстракция и модульность по крайней мере так же важны, как и в последовательном программировании. Фактически, мы выделим модульность как четвертое фундаментальное требование для параллельного программного обеспечения, дополнительно к параллелизму, масштабируемости, и локальности.

Основные абстракции, используемые в параллельном программиро-вании, сводятся к задачам и каналам:

1.Параллельное вычисление состоит из одной или более задач. Задачи выполняются параллельно. Количество задач может меняться во время выполнения программы.

2.Задача изолирует последовательную программу и локальную память. Вдобавок набор вводов и выводов определяет свой интерфейс в своей среде.

3.Задача может выполнять четыре основных действия дополнительно к чтению и записи в локальной памяти: послать сообщение на свои порты вывода, получить сообщение со своих портов ввода, создать новые задачи и уничтожить (завершить) задачу.

4.Операция отправления сообщения – асинхронная, она завершается немедленно. Операция получения – синхронная, она вызывает выполнение задачи, блокируя процесс, пока сообщение не будет получено.

5.Пары ввода/вывода могут связываться сообщениями в очереди, называемыми каналами. Каналы могут создаваться и удаляться, и ссылки на каналы (порты) способны включаться в сообщения, так что связность изменяется динамически.

6.Задания могут отображаться в физических процессорах различными способами; отображающее применение не влияет на семантику программы. Конкретно многочисленные задания могут отображаться в единственном процессоре (можно также представить, что единичная задача может быть отображенной в множестве процессоров, но эта возможность здесь не учитывается.)

Абстракция задач требует свойство локальности: данные, содержащиеся в локальной памяти задачи – «закрытые»; другие данные – «удаленные». Канальная абстракция обеспечивает механизм для указания, вычисление каких данных из одной задачи требуется для начала работы другой задачи. (Это охарактеризовано зависимостью данных). Модель задач и каналов обладает и некоторыми другими свойствами:

Производительность . Последовательные абстракции программирования, такие как, например, процедуры и структуры данных, эффективны из-за того, что они могут быть отображены просто и эффективно в компьютере фон Неймана. Задачи и каналы имеют аналогично прямое распределение в мультикомпьютере. Задача представляет часть кода, который может быть выполнен последовательно в единственном процессоре. Если две задачи, которые делят канал, отображаются в других процессорах, канальное соединение осуществлено как межпроцессорное соединение; если они отображаются в том же процессоре, могут быть использованы некоторые более эффективные механизмы.

Независимость распределения . Поскольку задания взаимодействуют, используя тот же механизм (каналы) независимо от положения задачи, результат вычисленный программой не зависит от того, где задача выполняется. Следовательно, алгоритмы могут разрабатываться и осуществляться без беспокойства о количестве процессоров, на которых они будут выполняться; фактически, алгоритмы часто разрабатываются так, что создают гораздо больше задач, чем процессоров. Это простой путь достижения масштабности: когда количество процессоров увеличивается, количество задач на процессор уменьшается, но сам алгоритм не должен быть модифицирован. Когда имеется большее число задач, чем процессоры смогли бы обслуживать, чтобы замаскировать задержки связи, обеспечиваются другие вычисления, которые могут выполняться, пока выполняется связь для доступа к удаленным данным.

Модульность . В модульном составлении программы различные компоненты программ разрабатываются отдельно как независимые модули и затем объединяются, чтобы получить полную программу. Взаимодействие между модулями ограничивается отчетливо выраженными интерфейсами. Следовательно, модульные реализации могут быть изменены без модификации других компонент, и свойства программы могут определяться из спецификации ее модулей и кода, который соединяет эти модули вместе. Когда успешно приложена модульная разработка, уменьшается программная сложность и облегчается многократное использование кода.

Детерминизм . Алгоритм или программа детерминированы, если при выполнении с конкретным вводом всегда получается один и тот же вывод. Он недетерминирован, если многочисленные выполнения с тем же вводом могут дать другой вывод. Хотя недетерминизм иногда полезен и должен поддерживаться, параллельная модель программирования, которая облегчает написание детерминированных программ, очень желательна. Детерминированные программы имеют тенденцию быть более понятными. Также при проверке на правильность должна вычисляться только одна последовательность выполнения параллельной программы, а не все возможные для выполнения.

Понятие параллельных вычислений

ОСНОВЫ ПАРАЛЛЕЛЬНЫХ ВЫЧИСЛЕНИЙ

Лекция №6


Под параллельными вычислениями (parallel or concurrent computations) можно понимать процессы решения задач, в которых в один и тот же момент времени могут выполняться одновременно несколько вычислительных операций

Параллельные вычисления составляют основу суперкомпьютерных технологий и высокопроизводительных расчетов

· Параллельная обработка

Если некое устройство выполняет одну операцию за единицу времени, то тысячу операций оно выполнит за тысячу единиц. Если предположить, что есть пять таких же независимых устройств, способных работать одновременно, то ту же тысячу операций система из пяти устройств может выполнить уже не за тысячу, а за двести единиц времени.

Аналогично система из N устройств ту же работу выполнит за 1000/N единиц времени. Подобные аналогии можно найти и в жизни: если один солдат вскопает огород за 10 часов, то рота солдат из пятидесяти человек с такими же способностями, работая одновременно, справятся с той же работой за 12 минут - принцип параллельности в действии!

Пионером в параллельной обработке потоков данных был академик А.А.Самарский, выполнявший в начале 50-х годов расчеты, необходимые для моделирования ядерных взрывов. Самарский решил эту задачу, посадив несколько десятков барышень с арифмометрами за столы. Барышни передавали данные друг другу просто на словах и откладывали необходимые цифры на арифмометрах. Таким образом, в частности, была расчитана эволюция взрывной волны.

Работы было много, барышни уставали, а Александр Андреевич ходил между ними и подбадривал. Это, можно сказать, и была первая параллельная система. Хотя расчеты водородной бомбы были мастерски проведены, точность их была очень низкая, потому что узлов в используемой сетке было мало, а время счета получалось слишком большим.

· Конвейерная обработка

Идея конвейерной обработки заключается в выделении отдельных этапов выполнения общей операции, причем каждый этап, выполнив свою работу, передавал бы результат следующему, одновременно принимая новую порцию входных данных. Получаем очевидный выигрыш в скорости обработки за счет совмещения прежде разнесенных во времени операций.

Предположим, что в операции можно выделить пять микроопераций, каждая из которых выполняется за одну единицу времени. Если есть одно неделимое последовательное устройство, то 100 пар аргументов оно обработает за 500 единиц. Если каждую микрооперацию выделить в отдельный этап (или иначе говорят - ступень) конвейерного устройства, то на пятой единице времени на разной стадии обработки такого устройства будут находится первые пять пар аргументов, а весь набор из ста пар будет обработан за 5+99=104 единицы времени - ускорение по сравнению с последовательным устройством почти в пять раз (по числу ступеней конвейера).



Модели параллельных компьютеров (классификация Флинна)

· «Один поток команд - один поток данных» (SISD - "Single Instruction Single Data")

Относится к фон-Неймановской архитектуре. SISD компьютеры это обычные, "традиционные" последовательные компьютеры, в которых в каждый момент времени выполняется лишь одна операция над одним элементом данных (числовым или каким-либо другим значением). Большинство современных персональных ЭВМ попадает именно в эту категорию.

· «Один поток команд - много потоков данных» (SIMD - "Single Instruction - Multiplе Data")

SIMD (англ. Single Instruction, Multiple Data) - принцип компьютерных вычислений, позволяющий обеспечить параллелизм на уровне данных. SIMD компьютеры состоят из одного командного процессора (управляющего модуля), называемого контроллером, и нескольких модулей обработки данных, называемых процессорными элементами. Управляющий модуль принимает, анализирует и выполняет команды.

Если в команде встречаются данные, контроллер рассылает на все процессорные элементы команду, и эта команда выполняется на нескольких или на всех процессорных элементах. Каждый процессорный элемент имеет свою собственную память для хранения данных. Одним из преимуществ данной архитектуры считается то, что в этом случае более эффективно реализована логика вычислений. SIMD процессоры называются также векторными.

· «Много потоков команд - один поток данных» (MISD - "Multiple Instruction - Single Data")

Вычислительных машин такого класса практически нет и трудно привести пример их успешной реализации. Один из немногих - систолический массив процессоров, в котором процессоры находятся в узлах регулярной решетки, роль ребер которой играют межпроцессорные соединения. Все процессорные элементы управляются общим тактовым генератором. В каждом цикле работы каждый процессорный элемент получает данные от своих соседей, выполняет одну команду и передает результат соседям.

Массивы ПЭ с непосредственными соединениями между близлежащими ПЭ называются систолическими . Такие массивы исключительно эффективны, но каждый из них ориентирован на решение весьма узкого класса задач. Рассмотрим, как можно построить систолический массив для решения некоторой задачи. Пусть, например, требуется создать устройство для вычисления матрицы D=C+AB , где

Здесь все матрицы - ленточные, порядка n . Матрица A имеет одну диагональ выше и две диагонали ниже главной; матрица B - одну диагональ ниже и две диагонали выше главной; матрица C по три диагонали выше и ниже главной. Пусть каждый ПЭ может выполнять скалярную операцию c+ab и одновременно осуществлять передачу данных. Каждый ПЭ, следовательно, должен иметь три входа: a, b, c и три выхода: a, b, c . Входные (in ) и выходные (out ) данные связаны соотношениями

a out = a in , b out = b in , c out = c in + a in *b in ;

Если в момент выполнения операции какие-то данные не поступили, то будем считать, что они доопределяются нулями. Предположим далее, что все ПЭ расположены на плоскости и каждый из них соединен с шестью соседними. Если расположить данные, как показано на рисунке, то схема будет вычислять матрицу D .

Массив работает по тактам. За каждый такт все данные перемещаются в соседние узлы по направлениям, указанным стрелками.

На рисунке показано состояние систолического массива в некоторый момент времени. В следующий такт все данные переместятся на один узел и элементы a11, b11, c11 окажутся в одном ПЭ, находящемся на пересечении штриховых линий. Следовательно, будет вычислено выражение c11+a11b11 .В этот же такт данные a12 и b21 вплотную приблизятся в ПЭ, находящемся в вершине систолического массива.

В следующий такт все данные снова переместятся на один узел в направлении стрелок и в верхнем ПЭ окажутся a12 и b21 и результат предыдущего срабатывания ПЭ, находящегося снизу, т.е. c11+a11b11 . Следовательно, будет вычислено выражение c11+a11b11+a12b21 . Это есть элемент d11 матрицы D .

Продолжая потактное рассмотрение процесса, можно убедиться, что на выходах ПЭ, соответствующих верхней границе систолического массива, периодически через три такта выдаются элементы матрицы D , при этом на каждом выходе появляются элементы одной и той же диагонали. Примерно через 3n тактов будет закончено вычисление всей матрицы D . При этом загруженность каждой систолической ячейки асимптотически равна 1/3 .

· «Много потоков команд - много потоков данных» (MIMD - "Multiple Instruction - Multiple Data")

Эта категория архитектур вычислительных машин наиболее богата, если иметь в виду примеры ее успешных реализаций. В нее попадают симметричные параллельные вычислительные системы, рабочие станции с несколькими процессорами, кластеры рабочих станций и т.д.

Гигантская производительность параллельных компьютеров и супер-ЭВМ с лихвой компенсируется сложностями их использования. Начнем с самых простых вещей. У вас есть программа и доступ, скажем, к 256-процессорному компьютеру. Что вы ожидаете? Да ясно что: вы вполне законно ожидаете, что программа будет выполняться в 256 раз быстрее, чем на одном процессоре. А вот как раз этого, скорее всего, и не будет.



Понравилась статья? Поделиться с друзьями: