История развития сетей абонентского доступа. Абонентские доступы в сети ISDN. Варианты организации абонентского доступа

Сегодня благодаря значительному росту ИТ простая телефонная служба уже не удовлетворяет конечных пользователей - им необходима технология одновременной передачи данных и быстрый доступ в Интернет. Однако с этими задачами узкополосные аналоговые системы уже не справляются…

оявление новых ИТ-технологий и значительное повышение их производительности привело не только к бурному развитию новых информационных систем, но и к расширению функциональности и спектра предоставляемых услуг уже существующих сетей связи. Неизвестные ранее, но перспективные технологии становятся необходимыми атрибутами современных телекоммуникаций, однако без соответствующей инфраструктуры связи они могут навсегда остаться лишь проектами.

Как известно, основание современной инфраструктуры телекоммуникаций образуют волоконно-оптические и другие наземные цифровые системы передачи и коммутации, а также спутниковые системы связи. Все современные телекоммуникационные сети оптимизируются и перестраиваются согласно двухуровневой иерархии: магистральные транспортные сети и сети доступа.

Такое устройство гораздо экономичнее и удобнее для построения открытых систем и доставки интегрированных услуг: общая технология и единый поток информации объединяют оба уровня. Однако не стоит забывать, что при строительстве сети большая часть всей стоимости приходится на ее нижнее звено, а именно - на местную сеть, то есть на сеть доступа. Причем последний ее отрезок, так называемая последняя миля, может оказаться гораздо дороже остальных сотен и тысяч миль. Построить этот ключевой отрезок сети бывает чрезвычайно трудно, и для решения этой проблемы сегодня на рынке представлен целый ряд технологий. Кроме традиционных проводных технологий для передачи информации используются, в частности, беспроводные системы абонентского доступа.

Еще несколько лет назад организация абонентского доступа, что называется, «по воздуху» могла показаться сетевому оператору полным бредом, однако уже сегодня большинству из них вполне очевидны преимущества, предоставляемые технологией радиодоступа. Новичкам технология беспроводного доступа позволяет в кратчайшие сроки и с наименьшими затратам внедриться на рынок услуг связи, а традиционным операторам - увеличить число абонентов и перечень предоставляемых услуг, что, как правило, положительно сказывается на прибыли.

С учетом отставания России, и особенно отдаленных ее регионов, от западных стран по распространенности сетевой инфраструктуры концепция беспроводного доступа явилась для нас привлекательным решением и получила широкое распространение.

Cистемы абонентского доступа

уществует две группы технологий абонентского доступа, предназначенных для решения проблемы последней мили, - проводные и беспроводные решения.

Из проводных следует назвать технологии, позволяющие организовать даже на основе существующих медных кабельных линий высокоскоростные цифровые абонентские линии. К ним относятся HDSL (High-bit-rate Digital Subscriber Line), ADSL (Asymmetrical DSL) и SDSL (Symmetrical DSL). С помощью этих технологий можно передавать данные на скорости от 2 до 8 Мбит/с по стандартному медному кабелю. Системы передачи на оптоволоконном или коаксиальном кабеле сегодня обеспечивают передачу данных со скоростью до 1 Гбит/с. В случае если сеть доступа представляет собой ЛВС, возможно применение привычных проводных сетевых технологий.

В последнее время беспроводные технологии организации абонентского доступа (Wireless Local Loop, WLL) становятся все более популярными. Для передачи данных здесь используется инфракрасное и световое излучение или радиосигнал. В целях организации сети распределения наиболее часто применяют беспроводные магистрали на основе использования каналов спутниковой связи, лазерной или узконаправленной инфракрасной связи, узкополосной и широкополосной радиорелейной связи.

Для решения разного рода задач операторы могут использовать различные технологии: узкополосные системы могут оказаться особенно эффективными в пригородных зонах и сельской местности, а для альтернативных операторов - и в городских условиях; радиодоступ может быть высокоэффективным для предоставления широкополосных услуг.

Узкополосные системы

В основном такие системы предназначены для передачи речи. Эти средства представлены фиксированными радиотерминалами для использования в сетях сотовой связи. Такие системы не приспособлены для высокоскоростной передачи данных из-за используемых алгоритмов компрессии речи и применяются для абонентов жилого сектора, таксофонных услуг и др.

Системы высококачественных услуг беспроводного доступа

Эти системы построены с использованием стандартов беспроводной телефонии. Системы фиксированного радиодоступа имеют более высокое качество передачи речи, нежели узкополосные системы (используется кодирование АДИКМ 32 Кбит/с), и способны обеспечивать факсимильную и модемную связь.

Широкополосные системы

Эти системы работают в нескольких диапазонах частот - от 2,4 до 28 ГГц. Они обеспечивают передачу высокоскоростных потоков данных корпоративным пользователям, передают цифровые потоки n*Е1 к оконечным устройствам (мультиплексорам, УАТС, базовым радиоблокам сотовых сетей мобильной и фиксированной связи и т.д.).

В беспроводных радиосистемах для сети доступа используются такие способы разделения каналов, как TDMA (Time Division Multiple Access), E-TDMA (Extended TDMA), FDMA (Frequency Division Multiple Access), CDMA (Code Division Multiple Access), W-CDMA (Wideband), а также их модификации.

Преимущества WLL

остоянно возрастающие требования, предъявляемые компаниями к емкости и качеству систем связи, побуждают операторов и провайдеров искать новые способы организации сетей связи передачи данных, чтобы расширить спектр и повысить качество предлагаемых услуг. Поэтому беспроводные WLL-системы пользуются все большей популярностью: в тех районах, где прокладка кабеля затруднена, нерентабельна или вовсе невозможна (труднодоступные районы, сельская местность, пригородные зоны), они обладают значительными бесспорными преимуществами.

Поскольку кабели имеют свойство быстро физически изнашиваться, а качество и номенклатура проводного доступа далеко не всегда соответствуют ожиданиям, проблема организации абонентской сети (последней мили) уже давно стала головной болью многих операторов. Сети Wireless Local Loop свободны от многих перечисленных недостатков и имеют следующие преимущества:

  • низкая стоимость оборудования, малый срок окупаемости системы (около четырех лет) и в несколько раз более низкая стоимость десятилетнего жизненного цикла. При использовании беспроводной технологии основные затраты приходятся на оборудование, цены на которое неуклонно падают. Уже сегодня в ряде случаев радиодоступ является выгодной альтернативой проводному решению. Стоимость системы WLL, использующей радиоканалы, не зависит от длины кабеля, состояния грунтов, наличия водных поверхностей и заболоченных участков в пределах зоны обслуживания. К тому же абонентская сеть, построенная на медном или волоконно-оптическом кабеле, представляет собой довольно громоздкое хозяйство, требующее, как правило, длительного поэтапного внедрения и значительных капитальных затрат;
  • простота и гибкость при расширении сети. Возможность сравнительно легкой трансформации в сеть мобильной связи;
  • простота и быстрота наращивания. Для подключения к системе нового абонента достаточно обеспечить его абонентским устройством. При росте системы ее можно легко расширить дополнительными абонентскими модулями и оборудованием базовых станций;
  • высокая скорость ввода в эксплуатацию и значительно меньшая трудоемкость работ по подключению. WLL позволяют в короткие сроки развернуть систему большой абонентской емкости, с ежедневным подключением десятков и сотен абонентских устройств. Это, во-первых, имеет большое значение для операторов связи в условиях жесткой конкуренции на рынке телекоммуникационных услуг, когда важно опередить возможных конкурентов и как можно быстрее получить отдачу от вложенных средств. А во-вторых, обеспечивает простоту и удобство (а следовательно, и низкие затраты) проведения монтажных работ;
  • отсутствие ограничений по рельефу местности. Передача сигнала обеспечивается независимо от рельефа местности благодаря возможности размещения БС на господствующих высотах и/или использованию ретрансляторов;
  • гибкая политика инвестирования создаваемой сети. Проводная инфраструктура требует крупномасштабных инвестиций, которые существенно опережают прогнозируемые потребности в количестве абонентских линий и не всегда оказываются оправданными, тогда как беспроводная технология допускает пошаговое инвестирование мелкими долями, что позволяет более точно отслеживать прогнозируемые потребности. Невысокий процент использования каждой абонентской пары на местных сетях делает неэффективными и малопривлекательными для инвесторов крупные капиталовложения и снижает окупаемость кабельных систем. Любое расширение сети требует очень больших инженерных работ на кабельных трассах, а прокладка и организация линий связи становится сложной проблемой, особенно в старых городах, и требует повышенных капитальных затрат в сельской местности;
  • высокая надежность. Количество отказов WLL составляет не более 6-10% от числа отказов кабельной сети.

Принимая во внимание тот факт, что 90% населения России проживает на территориях со средней плотностью населения менее 80 человек на квадратный километр, строительство и эксплуатация систем WLL может оказаться более рентабельным делом, чем использование систем с проводным принципом доступа.

Построение радиосети

аиболее сложным этапом в построении беспроводной сети является строительство инфраструктуры сети и ее проектирование. Обычно решением этой задачи занимается поставщик оборудования или специализированная компания. Конфигурация сети зависит от топографии, производительности сети и цены, которую готов заплатить покупатель, от ограничений, накладываемых окружающей средой и различными регулирующими организациями, от определенной стратегии оператора и т.д.

Часто оператор не может заранее указать точное местоположение каждого конкретного абонента, а только ориентировочный район расположения групп пользователей. После создания проекта оператор выполняет поставку абонентских устройств и производит монтаж оборудования для каждого пользователя сам - без привлечения проектировщика.

Следует отметить, что сотовая реализация беспроводных систем, особенно при перекрытии сот, нуждается в тщательном планировании частот, от которого во многом зависит емкость системы. Технология DSSS использует встроенные средства распределения частот. При применении технологии FHSS для предотвращения интерференции сигналов соседних сот необходимо динамическое управление частотами; оно должно повышать эффективность использования частотного спектра и емкость системы.

Оборудование и производители

а сегодня существует три основных подхода к построению систем беспроводного абонентского доступа:

  1. Системы на базе технологий и стандартов сотовой подвижной связи. Данная категория систем характеризуется довольно высокой емкостью сот и большой дальностью связи между базовыми станциями и пользовательскими терминалами. Дальность связи (для конкретной БС) в зависимости от многих факторов (от рельефа местности, параметров антенн, способа передачи, диапазона частот и т.д.) может достигать десятков километров. С учетом того, что данные системы работают на частотах сетей подвижной связи стандартов NMT-450, AMPS, D-AMPS или GSM, можно считать, что с коммерческой точки зрения они перспективны для уже действующих операторов сотовых сетей и малоперспективны для начинающих операторов вследствие конкуренции со стороны действующих операторов, дефицита частот и др.
  2. Системы на базе стандартов бесшнуровой телефонии. Системы стандартов бесшнуровой телефонии (CT-2, DECT) обеспечивают относительно небольшие радиусы сот (0,2-5 км). По сравнению с системами сотовой подвижной связи, их маломощные и менее громоздкие базовые станции проще и дешевле устанавливать. Эти системы не требуют частотного планирования, что значительно упрощает их инсталляцию. Системы стандартов CT-2 и DECT обеспечивают более высокое качество речи и большую скорость передачи данных по сравнению с системами на базе сотовых стандартов. Для связи базовой станции с контроллером системы могут использоваться проводные и беспроводные каналы, например радиорелейные и космической связи. При этом обеспечивается возможность выноса базовых станций (например, в пригороды, микрорайоны, отдельные населенные пункты и т.д.) на удаление до 50 км и более. Выбор физической среды передачи информации остается за оператором.
  3. Фирменные системы. Системы этой категории настолько сильно отличаются друг от друга своими базовыми радиотехнологиями, параметрами и возможностями, что дать им общую характеристику невозможно. Для удобства разделим их на две группы: узкополосные и широкополосные. Узкополосные системы схожи с системами WLL на базе технологий и стандартов сотовой связи. Они обеспечивают довольно большую дальность радиосвязи и невысокую скорость передачи данных. Широкополосные системы обладают весьма большой скоростью передачи данных (до 144 Кбит/с) и высокой помехозащищенностью, но их максимальные радиусы зон обслуживания БС несколько меньше, чем у узкополосных систем. Большим достоинством таких систем является возможность работы в частотном диапазоне, уже занятом другими радиосредствами, например сотовыми системами связи. Одним из наиболее важных этапов проектирования систем WLL является определение необходимого числа радиоканалов в зависимости от числа обслуживаемых абонентов и характеристик системы связи с точки зрения интенсивности создаваемой нагрузки и вероятности отказов (потерь). Большинство фирм, предлагающих свои системы, ориентируются на нагрузку, создаваемую одним абонентом, в пределах 0,05-0,1 Эрл с вероятностью отказа 1%.

В случае организации радиолинии между точкой доступа и абонентами в зоне радиовидимости базовой станции располагаются мобильные терминальные устройства пользователей или абонентские блоки, образующие одну ячейку. Если охватить всех абонентов с помощью одной базовой станции невозможно, то используют многосотовый принцип.

Когда сеть доступа реализована в виде радиолиний, то она обычно имеет одно- или двухчастотную структуру. В первом случае используется одна полоса частот для передачи пакетов к базовой станции и от нее, но эта структура имеет ряд существенных недостатков, ограничивающих ее применение в сетях с большим количеством абонентов. Другим вариантом является двухчастотная структура: на одной из частот реализуется канал множественного доступа, где все абоненты осуществляют передачу на базовую станцию, а на другой - прием с базовой станции, откуда абоненты принимают пакеты.

Основные параметры систем WLL и компании, производящие эти системы, представлены в табл. 2 .

Провайдеры и операторы

ще несколько лет назад системы WLL занимали лишь небольшую нишу телекоммуникационного рынка, и, по прогнозам аналитиков, масштабы их использования при установке новых линий связи должны были быть равны примерно 5%. Но уже сегодня системы беспроводного доступа используются чрезвычайно широко, их доля составляет примерно 20% от вновь установленных линий и продолжает расти. Однако для того, чтобы привлечь клиентов, провайдерам беспроводного доступа необходимо доказать свое превосходство над действующими операторами, причем цена не является единственным критерием.

Сегодня наблюдается тенденция к интеграции, то есть провайдеры услуг предлагают подключение к Интернету, связь на большие расстояния и другие услуги на базе уже существующей инфраструктуры действующих операторов.

В зависимости от типа предлагаемых услуг и операционных требований, общие требования операторов к технологии можно разделить на несколько категорий:

  • развитая радиотехнология;
  • эффективное и гибкое использование спектра;
  • простое планирование частоты;
  • простота установки;
  • обеспечение большой емкости при разнообразных сценариях.

Перспективы развития WLL

Целом прогнозы аналитиков и специалистов в отношении развития систем на основе беспроводного доступа положительные. Например, менеджер компании Motorola NSS по глобальной стратегии развития сетей абонентского радиодоступа Уильям Уэбб (William Webb), полон оптимизма: «Прогнозы, сделанные в последний год, выглядят достаточно реалистичными. Предсказывается, что в среднем число линий WLL достигнет к 2004 году примерно 50 млн. Наш собственный прогноз очень близок к этому».

КомпьютерПресс 12"2001

10.5.1 Современное развитие местных сетей электросвязи ориентировано на предоставление наиболее полного спектра услуг, начиная от стандартной телефонии до современных услуг мультимедиа. Это позволяет рассматривать элементы сетей не только с точки зрения наличия определенных линейных сооружений и различной аппаратуры, но и функционального назначения.

10.5.2 Сеть абонентского доступа - это совокупность технических средств между оконечными абонентскими устройствами, установленными в помещении пользователя, и тем коммутационным оборудованием, в план нумерации (или адресации) которого входят подключаемые к телекоммуникационной системе терминалы.

10.5.3 Исходя из данного определения, границы сети абонентского доступа достаточно широко варьируются в зависимости от типа передаваемой информации (аналоговая телефония, услуги ЦСИС, передача данных и интернет, радиовещание, телевидение) и включают в себя различные фрагменты традиционных проводных и беспроводных сетей. В каких-то случаях это всего лишь абонентские линии, в каких-то - это абонентские линии, абонентские концентраторы и соединительные линии до опорных АТС, в каких-то - это савокупность активного оборудования xDSL и медных или оптических линий связи и т. д.

Также в качестве среды переноса информации могут использоваться фрагменты сети кабельного телевидения, аппаратура беспроводной связи.

10.5.4 Сети абонентского доступа, работающие на основе проводных технологий, можно условно подразделить на следующие виды:

а) аналоговые абонентские линии АТС и цифровые системы уплотнения абонентских линий, позволяющие организовать несколько телефонных линий по одной паре медного кабеля;

б) цифровая сеть с интеграцией услуг (ISDN), предполагающая организацию цифровых абонентских линий на основе интерфейсов базового (BRI) и первичного доступа (PRI). Нередко помимо терминалов ЦСИО (ISDN) в данные сети включается оборудование учрежденческих и учрежденческо-производственных АТС корпоративных пользователей услуг связи;

в) сеть на основе технологии ADSL (асимметричная цифровая абонентская линия), позволяющая организовывать одновременно с аналоговой телефонией асимметричный канал передачи данных. Наибольшее развитие данной технологии связано с ростом в потребности доступа к сети Internet. Сеть обеспечивает при низкой стоимости выделенный канал для доступа в Internet, работает по существующим абонентским линиям и используется, в основном, индивидуальными клиентами телефонной сети связи;

г) сеть доступа на основе технологий xDSL (кроме ADSL), обеспечивающая различные варианты (скорость, вид передаваемой информации) доступа к сетям связи. Сеть предназначена для подключения корпоративных и индивидуальных пользователей и может работать по медным и оптическим линиям связи;

д) сеть беспроводного абонентского доступа WLL (беспроводная абонентская линия), предполагающая стационарное размещение или ограниченную подвижность абонентского радиооборудования и не требующая при развертывании больших затрат на строительство кабельных сооружений. Данная сеть может строиться на базе аппаратуры, работающей по стандарту DECT.

10.5.5 На сегодняшний день на рынке имеется значительное количество видов оборудования отечественного и импортного производства, применяемого для организации сетей абонентского доступа.

10.5.6 При оборудовании сетей абонентского доступа применяются такие же виды технологии и организации работ, как при монтаже других систем связи.

10.5.7 Монтаж и настройка различного оборудования сетей абонентского доступа требует участия специалистов в области телефонии, передачи данных, систем передачи, радиосвязи, кабельных линий и т.д.

10.5.8 Производство работ по проектированию, монтажу и настройке активного и пассивного оборудования должно осуществляться в соответствии с методиками и инструкциями производителей для каждого конкретного типа оборудования.

Сеть абонентского доступа – это совокупность технических средств между оконечными абонентскими устройствами, установленными в помещении пользователя, и тем коммутационным оборудованием, в план нумерации (или адресации) которого входят подключаемые к телекоммуникационной системе терминалы.

5.1. Модели сети абонентского доступа

В современной телекоммуникационной системе меняется не толь­ко роль сети доступа. В большинстве случаев расширяется и террито­рия, в границах которой создается сеть доступа. Для того, чтобы ис­ключить имеющиеся в современных публикациях различия в трактов­ке места и роли сети доступа, на рис. 5.1 показана модель перспективной телекоммуникационной системы.

Рисунок 5.1 – Модель телекоммуникационной системы

Первый элемент телекоммуникационной системы представ­ляет собой совокупность терминального и иного оборудования, которое устанавливается в помещении абонента (пользователя). В англоязычной технической литературе этот элемент телеком­муникационной системы соответствует термину Customer Premises Equipment (CPE).

Второй элемент телекоммуникационной системы и есть, собствен­но, сеть абонентского доступа. Роль сети абонентского доступа со­стоит в том, чтобы обеспечить взаимодействие между оборудовани­ем, установленным в помещении абонента, и транзитной сетью. Обыч­но в точке сопряжения сети абонентского доступа с транзитной се­тью устанавливается коммутационная станция. Пространство, покры­ваемое сетью абонентского доступа, лежит между оборудованием, размещенном в помещении у абонента, и этой коммутационной стан­цией.

Сеть абонентского доступа делится на два участка – нижняя плоскость рис. 5.1. Абонентские линии (Loop Network) можно рассматривать как индивидуальные средства подключения терминального оборудования. Как правило, этот фраг­мент сети абонентского доступа представляет собой совокупность АЛ. Сеть переноса (Transfer Network) служит для повышения эффектив­ности средств абонентского доступа. Этот фрагмент сети доступа ре­ализуется на базе систем передачи, а ряде случаев используются и устройства концентрации нагрузки.

Третий элемент телекоммуникационной системы – транзитная сеть. Ее функции состоят в установлении соединений между терминала­ми, включенными в различные сети абонентского доступа, или меж­ду терминалом и средствами поддержки каких-либо услуг. В рассмат­риваемой модели транзитная сеть может покрывать территорию, ле­жащую как в пределах одного города или села, так и между сетями абонентского доступа двух различных стран.

Четвертый элемент телекоммуникационной системы иллюстриру­ет средства доступа к различным услугам электросвязи. На рис. 5.1, в последнем эллипсе, указано название на языке оригинала (Service Nodes), которое переведено тремя словами – узлы, поддерживающие услуги. Примерами такого узла могут быть рабочие места телефонис­тов-операторов и серверы, в которых хранится какая-либо информа­ция.

Приведенную на рис. 5.1 структуру следует рассматривать как перспективную модель телекоммуникационной системы. Для реше­ния терминологических проблем обратимся к модели, свойственной сетям абонентского доступа аналоговых АТС. Такая модель показана на рис. 5.2. Рассматривая существующие местные сети, мы, как правило, будем оперировать двумя терминами – "Абонентская сеть" или "Сеть АЛ". Слова "Сеть абонентского доступа" используют­ся в тех случаях, когда речь идет о перспективной телекоммуникаци­онной системе.

Рисунок 5.2 – Модель абонентской сети

Эта модель справедлива как для ГТС, так и для СТС. Более того, для ГТС приведенная на рис. 5.2 модель инвариантна к структуре межстанционной связи. Она идентична для:

    нерайонированных сетей, состоящих, толь­ко из одной телефонной станции;

    районированных сетей, которые состоят из нескольких район­ных АТС (РАТС), соединенных между собой по принципу "каждая с каждой";

    районированных сетей, построенных с узлами входящего сооб­щения (УВС) или с узлами исходящего сообщения (УИС) и УВС.

Для всех элементов абонентской сети в скобках указаны термины на английском языке. Следует отметить, что тер­мин "линия межшкафной связи" (Link cable) в отечественной терми­нологии еще не применяется, так как подобные трассы в ГТС и СТС почти не используются.

Модель, иллюстрирующая основные варианты построения абонентской сети, приведена на рис. 5.3. На этом рисунке дета­лизированы некоторые фрагменты предыдущей модели.

Рисунок 5.3 – Основные варианты построения

абонентской сети

На рис. 5.3 использован ряд обозначений, редко встречаю­щихся в отечественной технической литературе. Устройство кроссировки кабеля (Cross-connection point) показано как две концентри­ческие окружности. Такой символ часто используется в документах МСЭ. Также типичным можно считать обозначение распределитель­ной коробки (Distribution point) черным квадратом.

Модель, показанная на рис. 5.3, может считаться универсаль­ной в отношении типа коммутационной станции. В принципе, она одинакова как для ручной телефонной станции, так и для самой со­временной цифровой системы распределения информации. Более того, данная модель инвариантна к виду интерактивной сети, например телефонной или телеграфной.

С другой стороны, для цифровой коммутационной станции может быть предложена собственная модель, которая позволит точнее отра­зить специфику сети абонентского доступа. Эта задача достаточно слож­на. Проблема состоит в том, что процесс внедрения цифровой ком­мутационной станции приводит к изменению структуры местной те­лефонной сети. В ряде случаев это заметно отражается на структу­ре абонентской сети. Характерный пример подобной ситуации – установка цифровой коммутационной станции, заменяющей несколько старых электромеханических станций. Пристанционный участок циф­ровой коммутационной станции – при таком способе модернизации местной телефонной сети – фактически объединяет все территории, обслуживавшиеся ранее демонтируемыми электромеханическими АТС. Кроме того, при внедрении цифровой коммутационной станции мо­гут возникать специфические (постоянные или временные) реше­ния, когда некоторые группы удаленных абонентов подключаются за счет использования концентраторов.

Конечно, подобные решения должны обязательно приниматься во вни­мание на этапе разработки общей концепции модернизации местной теле­фонной сети. Когда соответствующие концептуальные решения приняты, можно приступать к поиску оптимальных вариантов построения сети або­нентского доступа. Для гипотетической цифровой коммутационной стан­ции эти варианты представлены на рис. 5.4. Два последних рисунка (5.3 и 5.4) имеют ряд общих моментов.

Рисунок 5.4 – Модель сети абонентского доступа для цифровой коммутационной станции

Во-первых, обе структуры подразумевают наличие так называе­мой "зоны прямого питания" – анклава, в пределах которого АЛ вклю­чаются в кросс непосредственно (без соединения кабелей в распре­делительных шкафах).

Во-вторых, за "зоной прямого питания" располагается следующая область сети доступа, для которой в цифровой станции целесообраз­но использовать выносные абонентские модули (концентраторы или мультиплексоры), а для аналоговой АТС – либо неуплотненные кабе­ли, либо каналы, образованные системами передачи.

В третьих, необходимо отметить, что структура абонентской сети – вне всякой зависимости от типа коммутационной станции – соответ­ствует графу с древовидной топологией. Это существенно с точки зрения надежности связи: применение цифровой коммутационной техники не только не повышает коэффициент готовности АЛ, но, в ряде случаев, снижает его из-за введения дополнительного оборудо­вания на участке от кросса АТС до терминала пользователя.

Для составления перечня необходимых далее терминов и, особен­но, для установления соответствия между понятиями, принятыми в отечественной практике и документах МСЭ, целесообразно привес­ти структуру сети АЛ, представленную на верхней части рис. 5.5.

Для структурной схемы АЛ (верхняя часть рис. 5.5) представ­лены три варианта подключения абонентского терминала к коммута­ционной станции.

Верхняя ветка данного рисунка показывает перспективный вари­ант подключения ТА без использования промежуточного кроссового оборудования. Кабель прокладывается от кросса до распределитель­ной коробки, где посредством абонентской проводки осуществляет­ся подключение ТА.

На средней ветке рисунка изображен вариант подключения ТА по шкафной системе, когда между кроссом и распределительной короб­кой размещается промежуточное оборудование. В нашей модели роль такого оборудования отведена распределительному шкафу.

В ряде случаев АЛ организуется с использованием воздушных ли­ний связи (ВЛС). На рис. 5.5 этот вариант показан на нижней ветке. В такой ситуации на столбе устанавливается кабельный ящик (КЯ) и вводно-выводные изоляторы. В месте размещения распреде­лительной коробки монтируется абонентское защитное устройство (АЗУ), предотвращающее возможное влияние на ТА опасных токов и напряжений. Следует отметить, что организация АЛ или ее отдель­ных участков за счет строительства ВЛС не рекомендуется; но в ряде случаев – это единственный вариант организации абонентского дос­тупа.

Рисунок 5.5 – Структурная схема и стыки оборудования абонентских линий для ГТС и СТС

Общая архитектура телекоммуникационной сети

Сети доступа

8.3.2. Технические средства сети доступа

Транспортные сети.

Структура и технологии транспортных сетей

Модели транспортных сетей

Принципы построения транспортных сетей

Общие тенденции развития транспортных сетей

Сети с коммутацией каналов

Общие положения

Принципы построения телефонных сетей

Пакетные сети связи

Анализ технической реализации IP – телефонии

Виды соединений в сети IP – телефонии

Сети H.323

Технология MPLS

Общая характеристика сети NGN

Назначение и возможности сети NGN

Базовые положения концепции NGN

В разделе 8 рассмотрена общая структура телекоммуникационной сети. Отмечено,

что на данном этапе развития сеть электросвязи приобретает новые свойства, превращаясь постепенно в инфокоммуникационную сеть. Указаны преимущества цифровых сетей, что позволяет перейти от многоуровневого принципа построения сетей к более эффктивному двухуровневому принципу, включающему сеть доступа и транспортную сеть. Приведенная в разделе классификация сетей электросвязи, позволяет определить место и роль каждой сети в ЕСЭ. Рассмотрены принципы построения и технологии, используемые на сетях доступа и транспортных сетях. Отмечена роль сети каждого уровня в Единой сети электросвязи. Отмечается пере-ход на транспортных сетях к IP технологиям передачи информации. Рассмотрены принципы построения коммутируемых сетей. Важное место в разделе занимают вопросы построения Базовой телефонной сети – как доминирующей сети ЕСЭ. Уделено внимание принципам построения пакетных сетей, использующих IP технологии. Рассмотрены основы построения сети нового поколения NGN, элементы которой внедряются на ЕСЭ и которая является прообразом ЕСЭ в недалеком будущем. В разделе приведены контрольные вопросы, список рекомендуемой литературы и глоссарий.



8.1 Общая архитектура телекоммуникационной сети

Современная телекоммуникационная сеть представляет собой одну из сложнейших систем, которые когда- либо создавал человек. Эта сеть объеди-няет миллионы различных источников и потребителей информации, которыми могут быть простейшие сигнальные устройства, отдельные лица, компьютерные сети, предприятия, а так же объекты, разбросанные на большой территории и даже находящиеся в космосе. Основное назначение телекоммуникационной сети - передача информации между пользователями и обеспечение доступа к необходимой им информации. Архитектура телекоммуникационной сети представлена на рис. 8.1

Рисунок 8.1 Архитектура телекоммуникационной сети

Элементами телекоммуникационной сети являются:

· оконечные пункты;

· узлы связи;

· каналы связи;

· система управления сетью.

Оконечные пункты (ОП) (в том числе абонентские), содержат оборудование ввода и вывода информации, а иногда для ее хранения и обработки, которое предназначено:

· для приема информации от пользователя и преобразования ее в сообщение, необходимое для передачи по сети связи;

· для приема сообщения из сети и его преобразования в вид удобный для выдачи пользователю.

Узлы связи (УС ) предназначены для распределения информации. Узлы связи, в свою очередь, делятся на коммутационные (УК с коммутацией каналов, сообщений или пакетов), предназначенные для распределения сообщений, и сетевые, предназначенные для распределения каналов, пучков каналов и групповых трактов.

Каналы связи (КС) обеспечивают передачу электромагнитных сигналов, ограниченных по мощности в определенной области частот, или с определенной скоростью. Каналы объединяются в линии связи между пунктами и узлами сети и служат для переноса (передачи) информации в пространстве.

Линия связи , соединяющая абонентский пункт с УК, называется абонентской линией. Линии связи оборудованы каналообразующей аппаратурой, с помощью которой в ЛС выделяются отдельные каналы связи (КС). Каналысвязи вместе с аппаратурой передачи и приема сообщения образуют тракт передачи сообщения (ТПС). Два тракта передачи сообщений и более, с коммутированных между собой с помощью УК, образуют соединительный тракт передачи сообщений.

Внедрение ВЦ и БД, интеллектуальных платформ на телекоммуникационной сети позволяет предоставлять пользователям сети практически любые информационные услуги и сеть приобретает новые свойства, превращаясь в инфокоммуникационную сеть.

Система управления сети связи (СУСС) обеспечивает:

· нормальную работу отдельных устройств и каналов;

· доставку сообщений по адресу;

· нормальное функционирование сети, включая организацию ремонта и восстановления, перераспределение каналов и трактов, перераспределение и ограничение потоков сообщений;

· распределение задач и запросов по ВЦ и оптимального использования их мощностей;

· управление расчетом за услуги и услугами сети;

· функционирование сети в целом как отрасли народного хозяйства и ее развитие.

Современные сети связи, прежде всего, характеризуются:

· применением цифровых систем коммутации и передачи и вычислительных средств;

· интеграцией различных видов передаваемой информации (речь, изображение, данные, факсимильные и другие сообщения).

На базе таких сетей создаются различного рода частные (учережденческие) и корпоративные сети.
Цифровая техника доставки и распределения информации имеет ряд преимуществ:
Во-первых , процесс совершенствования в технологии производства больших интегральных схем уменьшает стоимость цифрового оборудова­ния и его габариты, на порядок снижает интенсивность отказов его элементов. В настоящее время надежно работают цифровые схемы с сотнями тысяч элементов при общем времени простоя несколько часов за 20 лет эксплуата-ции. Современная технология позволяет сформи­ровать на кристалле, площадью в несколько квадратных миллиме­тров, до 10 тыс. элементов и более при очень небольшом расходе материалов и электроэнергии.
Во-вторых , цифровые методы передачи сигналов позволяют увеличить пропускную способность каналов связи. В настоящее время разработаны такие широкополосные передающие среды, как оптические кабели. Однако для полной реализации пропускной способности оптического кабеля требуется помехоустойчивость присущая только цифровой технике. Низкая эф­фективность использования абонентских линий может быть повышена путем их цифрового уплотнения. Данные с различными скоростями передачи гораздо эффективнее могут передаваться с помощью цифровой техники передачи, чем на базе аналоговой. Цифровыми методами в едином потоке могут передаваться речь, данные и сигналы изображений, а также сиг­налы управления и контроля процессов установления соединений в сети.
В-третьих, цифровые методы обеспечивают возможность сложной обработки сигналов. Кодирование аналоговых сигналов дает возможность реализовать их цифровую обработку и суще­ственно снизить избыточность, а использование недорогих микропроцессоров и микро - ЭВМ обеспечивает возможность более слож­ной их обработки. Цифровая информация может оперативно на­капливаться без искажений в цифровой памяти, которая сейчас становится все более дешевой и позволяет более эффективно ис­пользовать оборудование сети и обеспечить такие преимущества, как регенерацию сигналов и изменение скорости передачи.

Нако­нец , цифровые методы обеспечивают лучшие условия взаимодей­ствия с ЭВМ и терминалами пользователей.
Принципы, используемые для построения сети связи в целом , зависят от многих факторов . К ним можно отнести:

· емкость национальной сети;

· площадь территории, которую охватывает сеть связи;

· административное деление территории страны;

· структуру и организацию технической эксплуатации средств и сетей связи;

· технические средства и технологии, которые используются для построения сети и реализации услуг;

· потребность в услугах связи.

В связи со сказанным, можно выделить два общих принципа построения сети связи:

· многоуровневый;

· двухуровневый .

Многоуровневый принцип был разработан для аналоговых сетей связи.
Двухуровневый принцип характерен при полной цифровизации сети и внедрении современных систем коммутации (асинхронных, использующих технологии пакетной коммутации – АТМ, IP), а также мощных систем передачи, использующих технологию SDH, WDM, Ethernet, базирующихся на оптических кабелях, высокоскоростные спутниковые системы передачи.
В соответствии с многоуровневым принципом построения применительно к телефонной сети, вся территория страны делится на зоны нумерации. К зонам нумерации предъявляются следующие требования:

· размер зоны должен быть таким, чтобы в течение длительного времени (50 лет) не пришлось изменять систему нумерации в пределах зоны;

· в пределах зоны нумерации должна замыкаться значительная часть возникающего на сети обмена;

· емкость зоны нумерации не должна превышать 8-ми миллионов номеров.

Учитывая вышесказанное, границы зоны, как правило, совпадают с админи-стративными границами областей, краев, республик. Допускается, в случае необходимости, образование нескольких зон на территории области, края, республики.
В настоящее время на территории России образовано 81 зона нумерации. Большинство из них создано в границах области или республик. Но в некоторых областях создано по две зоны и даже три. Например, на территории Московской области создано четыре зоны – 495, 496, 497,499.
В пределах зоны нумерации создаются местные телефонные сети (ГТС, СТС, ТС) и внутризоновая телефонная сеть(ВзТС), которая предназначена для связи различных местных телефонных сетей в пределах зоны нумерации и выхода пользователя местных сетей на междугородную телефонную сеть (МГТС). Местные сети и внутризоновые сети зоны нумерации образуют зоновую телефонную сеть(ЗТС). Зоновые телефонные сети различных зон связываются между собой с помощью междугородной телефонной сети (МГТС). Зоновые и междугородная телефонные сети образуют Националь-ную телефонную сеть России. Национальные сети различных государств связываются между собой с помощью международной телефонной сети (МНТС).
Развитие информационных технологий позволяет, с учетом потребностей пользователей в широком спектре телекоммуникационных услуг, уже в настоящее время создавать полностью цифровые широкополосные сети связи. Как показывают расчеты, для эффективного использования средств связи, решения проблем качества предоставления услуг, многоуровневый принцип построения широкополосных сетей является нецелесообразным.
Поэтому для построения широкополосных сетей связи, получивший название мультисервисных сетей, был предложен двухуровневый принцип построения. Двухуровневый принцип предполагает создание в пределах национальной сети, а также мира, сетей доступа и транспортной сети.
Сеть доступа – сеть связи, обеспечивающая подключение терминальных устройств (многофункциональных) к оконечному узлу транспортной сети связи.
Транспортная сеть связи – это сеть, обеспечивающая перенос разных видов информации с использованием различных протоколов передачи.

8.2 Классификация сетей электросвязи

Классификация сетей электросвязи по существенным признакам позволяет определить место каждой сети в системе электросвязи РФ, выявить свойства сетей с разных точек зрения на основе системного подхода, оценить роль и значение каждой сети в процессе информатизации общества и экономике страны. Это даст возможность сопоставлять сети между собой, разрабатывать требования к сетям и создавать сети с заданными характеристиками. Сети, входящие в ЕСЭ, можно классифицировать по следующим признакам:

· видам передаваемой информации;

· территориальному признаку;

· принадлежности;

· организации каналов;

· сфере применения для предоставления услуг;

· способу доставки сообщений;

· уровню интеграции услуг;

· виду передаваемого сигнала;

· способу распределения сообщений;

· функциональному признаку;

· мобильности абонентов;

· кодам нумерации;

· типу среды распространения;

· объему предоставляемых услуг;

· структуре сети.

По виду передаваемой информации сети делятся на телефонные, телеграфные, передачи данных, компьютерные сети, сигнальные сети и т. д.

Единая сеть электросвязи РФ состоит из расположенных на территории Российской Федерации сетей электросвязи следующих категорий:

· сеть связи общего пользования;

· технологические сети связи;

· выделенные сети связи;

· сети связи специального назначения .

Сеть связи общего пользования (ССОП) предназначена для возмездного оказания услуг электросвязи любому пользователю на территории РФ. Она включает в себя телефонные сети электросвязи, определяемые географически в пределах обслуживаемой территории и ресурса нумерации и не определяемые географически в пределах территории РФ и ресурса нумерации, а также сети, предназначенные для предоставления населению других услуг связи.
Сеть связи общего пользования представляет собой комплекс взаимодействующих сетей электросвязи, в том числе сетей связи для распределения программ радиовещания, телевизионного вещания и мультисервисные сети.
Сеть ССОП имеет присоединение к сетям связи общего пользования иностранных государств.

Выделенные сети связи (ВСС). Являются сети связи, предназначенные для оказания услуг электрической связи ограниченному кругу пользователей или группам таких пользователей. ВСС могут взаимодействовать между собой. ВСС, как правило, не имеют присоединения к сети связи общего пользования, а также к ССОП иностранных государств. Технологии и средства связи выделенных сетей связи, а также принципы их построения устанавливаются собственниками или иными владельцами этих сетей.
Сеть ВСС может быть присоединена к ССОП с переводом в категорию сети связи общего пользования, если ВСС соответствует требованиям, установленным для ССОП. При этом выделенный ресурс нумерации изымается и предоставляется ресурс нумерации из ресурса нумерации ССОП. Оказание услуг связи операторами выделенных сетей связи осуществляется на основании соответствующих лицензий в пределах указанных в них территорий.

Технологические сети связи (ТСС) предназначены для обеспечения производственной деятельности организаций, управления технологическими процессами в производстве. Технологии и средства связи, применяемые для создания технологических сетей связи, а также принципы их построения устанавливаются собственниками или иными владельцами этих сетей. При наличии свободных ресурсов технологической сети связи часть этой сети может быть присоединена к сети ССОП с переводом в категорию ССОП для оказания платных услуг связи любому пользователю на основании соответствующей лицензии. Такое присоединение допускается, если:
- Часть технологической сети, предназначенной для присоединения к ССОП, может быть технически, или программно, или физически отделена собственником от технологической сети.
- Присоединенная к ССОП часть технологической сети связи соответствует требованиям функционирования ССОП.
Части ТСС, присоединенной к ССОП, выделяется ресурс нумерации из ресурса нумерации ССОП. Национальные сети ТСС могут быть присоединены к сетям ТСС иностранных государств для обеспечения единого технологического цикла.

Сети связи специального назначения (СССН) предназначены для нужд государственного управления, обороны страны, безопасности государства и обеспечения правопорядка. Эти сети не могут быть использованы для платного оказания услуг связи, если иное не предусмотрено законодательством РФ.

Выделенные, технологические и сети специального назначения объединены в категорию сетей ограниченного пользования (ОгП).

По территориальному признаку сети делятся на местные, внутризоновые, междугородные, международные, региональные, межрегиональные, магистральные. Указанный признак используется для первичных сетей, вторичных сетей, для сетей отдельных операторов и операторов межрегио-нальных компаний.

Признак принадлежности определяет собственника сети. Им может быть государство, частное лицо, акционерное общество, организации и отдельные предприятия.

По организации каналов различают первичные и вторичные сети.

По сфере применения для предоставления услуг можно выделить телекоммуникационные и инфокоммуникационная сети. Телекоммуникационная сеть состоит из линий и каналов связи, узлов и оконечных станций и предназначена для обеспечения электрической связью пользователей. Инфокоммуникационная сеть предназначена для обеспечения пользователей электрической связью и доступа к необходимой им информации.

По способу доставки сообщений различают сети с коммутацией каналов и сети с накоплением (сети с коммутацией сообщений и с коммутацией пакетов).

По уровню интеграции услуг сети делят на несколько классов: моносервисные, сети с низким уровнем интеграции, средним уровнем интеграции и мультисервисные сети, предоставляющие неограниченный объем услуг. К моносервисной сети относится телеграфная сеть. К сетям с низким уровнем интеграции можно отнести аналоговую телефонную сеть. К сетям со средним уровнем интеграции услуг относится сеть N - ISDN, сеть мобильной связи 2G. Мультисервисная сеть это сеть нового поколения NGN.

По форме передаваемых сигналов делят сети на аналоговые, аналогово-цифровые и цифровые.

По способу распределения сообщений сети делятся: на коммутируемые, некоммутируемые, циркулярной связи.

По функциональному признаку различают сети доступа и транспортные сети.

По мобильности абонентов можно выделить сети фиксированной и мобильной связи. Абоненты фиксированной связи имеют стационарные терминалы в отличие от абонентов сети мобильной связи.

По кодам нумерации сети делятся на сети географических (коды ABC) и негеографических(коды DEF) зон. Использование указанных кодов связано с созданием выделенных, в том числе мобильных сетей, на сети ЕСЭ РФ.

По типу используемой среды распространения сети разделяют: на проводные, радиосети и смешанные. В свою очередь, радиосети разделяются на сети наземные и спутниковые.

По объему предоставляемых услуг можно выделить сети, занимающие существенное положение (пропускают более 25% трафика и имеют более 25% монтированной емкости коммутации от общей емкости сети). Такой сети владеет доминирующий оператор связи .

Важным классификационным признаком является структура сети связи. На рис.8.3 представлены типовые структуры сетей, которые отличаются друг от друга числом линий связи, характером взаимодействия узлов, связностью узлов и т. п.

Полносвязная сеть (рис. 8.3а) – «каждый с каждым». В такой сети число линий связи равно N(N-1)/ 2, где N – число узлов на сети. Связность h = N-1.

Древовидная сеть (рис. 8.3б). В такой сети между любыми двумя узлами может быть только один путь, т. е. сеть односвязная h = 1. Число линий связи в такой сети равно N – 1. Частными случаями древовидной сети являются: радиально-узловая сеть (рис. 8.2в), звездообразная сеть (рис. 8.3г) и линейная сеть (рис. 8.3д).

Петлевая (шлейфная, кольцевая) сеть (рис. 8.3е). В ней число линий связи равно N, и между каждыми двумя узлами имеется по два пути (h = 2).

Сетка – сетеобразная сеть (рис. 8.3 ж – м). В такой сети каждый узел смежен только с небольшим числом других узлов. Выбор той или иной структуры сети определяется, прежде всего, экономическими показателями и требованиями к надежности и живучести сети.

Рисунок 8.3 Структура сетей различного вида

8.3 Сети доступа

В настоящее время все большее признание получает разделение сети связи на две части: транспортную сеть и сеть доступа. Транспортная сеть представлена междугородной и внутризоновыми сетями связи. Сеть доступа представлена местными сетями и предназначена для подключения разнообразных абонентских терминалов к транспортной сети связи.
На рисунке 8.4 показана модель перспективной телекоммуникационной системы и место сети абонентского доступа.
Первый элемент телекоммуникационной системы представляет собой совокупность терминального и иного оборудования, которое устанавливается в помещении абонента.

Рисунок 8.4 Структура телекоммуникационной системы

Второй элемент сеть абонентского доступа. Обычно в точке сопряжения сети абонентского доступа с транзитной сетью устанавливается коммутационная станция. Пространство, покрываемое сетью абонентского доступа, лежит между оборудованием, размещенным в помещении абонента, и этой коммутационной станцией.

В ряде работ сеть абонентского доступа делится на два участка:

· абонентские линии (АЛ) рассматриваются как индивидуальные средства подключения терминального оборудования;

· сеть переноса , служащую для повышения эффективности средств абонентского доступа.

Третий элемент телекоммуникационной системы - транспортная сеть . Ее функции состоят в установлении соединений между терминалами, включенными в различные сети абонентского доступа, или между терминалом и средствами поддержки каких либо услуг.
Четвертый элемент телекоммуникационной системы - средства доступа к услугам, которые обеспечивают доступ пользователей к различным услугам электросвязи.

Развитие абонентского доступа

Существенные качественные изменения, свойственные современной телекоммуникационной системе, затронули один из самых консервативных элементов сети электросвязи – абонентскую линию(АЛ). Особенность современной телекоммуникационной системы заключается в том, что роль АЛ и принципы ее создания изменяются весьма существенно. Понятие “ абонентская линия” уже не отражает сути элемента сети электросвязи между терминалом пользователя и коммутационной станцией. В технической литературе появился новый, принятый уже в международных стандартах и рекомендациях, термин “Access Network” - “сеть доступа”. Сеть абонентского доступа состоит из двух основных элементов. Первый элемент сети дступа представляет собой совокупность АЛ, а второй – сеть переноса. Чаще всего АЛ ассоциируются с индивидуальной двухпроводной цепью, обеспечивающей обмен информацией в полосе пропускания тональной частоты (ТЧ). Сеть переноса предназначена для снижения капитальных затрат на линейно-кабельные сооружения в рамках системы абонентского доступа. Этот фрагмент сети доступа реализуется на базе систем передачи и, в ряде случаев, устройств концентрации нагрузки. В частном случае, сеть переноса может отсутствовать. Тогда, понятия сеть АЛ и сеть доступа (СД) становятся тождественными.
Сеть абонентского доступа можно рассматривать как совокупность первичной сети и нескольких вторичных сетей. Следует подчеркнуть, что в процессе развития средств электросвязи, отличия между первичной сетью и вторичными сетями становятся все менее заметными.

Абонентская сеть, соединяющая терминальное оборудование с коммутационной станцией, считалось самым консервативным элементом телекоммуникационной системы. В конце ХХ века ситуация кардинально изменилась; к абонентской сети предъявляются новые требования. Выполнение этих требований ведет к существенным изменениям принципов построения и дальнейшего развития абонентской сети. В своем новом качестве она стала называться сетью абонентского доступа.

Процессы модернизации существующих серей абонентского доступа в самое ближайшее время изменят этот элемент телекоммуникационной системы до неузнаваемости. Операторам электросвязи следует обратить самое серьезное внимание на сети абонентского доступа. Использованные ранее принципы их создания и развития могут стать серьезнейшим тормозом дальнейшей модернизации всей телекоммуникационной системы. Одним из основных препятствий - проблемы существующей кабельной магистральной сети.

Проблемы кабельной магистрали существуют также давно, как и сами кабельные магистральные сети. На сегодняшний день - это:

Физический износ;

Перегруженность кабельной канализации и отсутствие свободных каналов;

Моральный износ;

Высокая стоимость эксплуатации, имеющая тенденцию к увеличению.

Растущий спрос на новые услуги при условии достаточного количества обычных медно-проводных абонентских линий предопределил разработку технологий «цифровых абонентских линий» (английский термин - Digital Subscriber Loop). Технологии, получившие название xDSL по английской аббревиатуре, позволили организовывать высокоскоростную цифровую передачу по существующим абонентским линиям. Таким образом, новые услуги, требовавшие цифрового метода передачи, стали предоставляться с использованием существующей кабельной распределительной сети.

В абонентских распределительных сетях стали широко применяться также оптические технологии. Получили распространение концепции FTTB (Fiber to the Building), FTTZ (Fiber to the Zone) и другие. Суть их сводится к отказу от дальнейшего строительства медных кабельных линий, вместо которых используются оптические. Такая концепция широко использовалась и используется при новом строительстве, однако она не нашла широкого распространения в районах со сложившейся инфраструктурой медных линий, где существенно дешевле применение xDSL.

В обоих случаях операторов интересовали возможности предоставления современных цифровых или интегрированных услуг и сеть доступа модернизировалась для решения именно этой задачи.

В развивающихся странах, к которым (по крайней мере в смысле сети связи) можно отнести Казахстан, потребности операторов другие. Спрос на новые виды услуг, хотя и растет, но все равно составляет единицы процентов, да и то в основном в крупных городах. Основной задачей развития сети по-прежнему остается традиционная «телефонизация», то есть обеспечение абонентов обычной аналоговой телефонной связью.

В развивающихся странах, в том числе и в Казахстане, также прошла (или идет) модернизация магистральных линий, затем транзитных станций, и, наконец, городских и сельских АТС. Под модернизацией в данном случае понимается новое строительство с постепенным выводом из эксплуатации устаревшего оборудования. При этом емкость новых коммутационных станций обычно в несколько раз больше заменяемых старых. Таким образом, у оператора появляется возможность предоставления качественных услуг традиционной телефонии с точки зрения возможностей коммутационного оборудования и магистральной сети, но отсутствует или явно недостаточна по емкости абонентская распределительная сеть.

Современные технологические решения, разработанные изначально для предоставления цифровых услуг, были с успехом применены и для задач, характерных для развивающихся стран. Так, на основе решений xDSL была создана целая гамма оборудования уплотнения абонентских линий. Это оборудование позволяет повысить эффективность использования существующих АЛ в 4,8, а иногда и в 30, 60 раз.

Как и в развитых странах, операторы заинтересованы в максимально эффективном использовании существующей кабельной сети, а при новом строительстве предпочтение отдают прокладке широкополосных, надежных и удобных в эксплуатации волоконно-оптических линий связи (ВОЛС). Применение ВОЛС на участке «последней мили» давно стало нормой в странах Юго-Восточной Азии, Южной и Центральной Америки и т.д. При этом на первом этапе ВОЛС используется в основном для предоставления обычных аналоговых услуг, а в дальнейшем, по мере возникновения платежеспособного спроса, по тем же линиям предоставляются услуги ISDN или передачи данных.

Несколько особняком стоит фиксированный радиодоступ (английский термин WLL - Wireless Local Loop). Данный способ подключения абонентов в последние годы начал широко применяться во всем мире для решения задач, предоставления традиционных услуг аналоговой телефонии. Предоставление с помощью средств радиодоступа цифровых, особенно широкополосных услуг затруднено ограниченностью частотного ресурса. Для беспроводной передачи данных используются специализированные системы. Радиодоступ применяется в основном альтернативными операторами, не имеющими собственной кабельной распределительной сети. Эффективен он также в труднодоступных и малонаселенных районах.

Все эти тенденции не должны обойти и Республику Казахстан которая становится все более активным участником создаваемого глобального информационного сообщества.



Понравилась статья? Поделиться с друзьями: