Статические методы

Последнее обновление: 25.12.2018

Кроме обычных полей, методов, свойств класс может иметь статические поля, методы, свойства. Статические поля, методы, свойства относятся ко всему классу и для обращения к подобным членам класса необязательно создавать экземпляр класса. Например:

Class Account { public static decimal bonus = 100; public decimal totalSum; public Account(decimal sum) { totalSum = sum + bonus; } } class Program { static void Main(string args) { Console.WriteLine(Account.bonus); // 100 Account.bonus += 200; Account account1 = new Account(150); Console.WriteLine(account1.totalSum); // 450 Account account2 = new Account(1000); Console.WriteLine(account2.totalSum); // 1300 Console.ReadKey(); } }

В данном случае класс Account имеет два поля: bonus и totalSum. Поле bonus является статическим, поэтому оно хранит состояние класса в целом, а не отдельного объекта. И поэтому мы можем обращаться к этому полю по имени класса:

Console.WriteLine(Account.bonus); Account.bonus += 200;

На уровне памяти для статических полей будет создаваться участок в памяти, который будет общим для всех объектов класса.

При этом память для статических переменных выделяется даже в том случае, если не создано ни одного объекта этого класса.

Статические свойства и методы

Подобным образом мы можем создавать и использовать статические методы и свойства:

Class Account { public Account(decimal sum, decimal rate) { if (sum < MinSum) throw new Exception("Недопустимая сумма!"); Sum = sum; Rate = rate; } private static decimal minSum = 100; // минимальная допустимая сумма для всех счетов public static decimal MinSum { get { return minSum; } set { if(value>0) minSum = value; } } public decimal Sum { get; private set; } // сумма на счете public decimal Rate { get; private set; } // процентная ставка // подсчет суммы на счете через определенный период по определенной ставке public static decimal GetSum(decimal sum, decimal rate, int period) { decimal result = sum; for (int i = 1; i <= period; i++) result = result + result * rate / 100; return result; } }

Переменная minSum, свойство MinSum, а также метод GetSum здесь определены с ключевым словом static , то есть они являются статическими.

Переменная minSum и свойство MinSum представляют минимальную сумму, которая допустима для создания счета. Этот оказатель не относится к какому-то конкретному счету, а относится ко всем счетам в целом. Если мы изменим этот показатель для одного счета, то он также должен измениться и для другого счета. То есть в отличии от свойств Sum и Rate, которые хранят состояние объекта, переменная minSum хранит состояние для всех объектов данного класса.

То же самое с методом GetSum - он вычисляет сумму на счете через определенный период по определенной процентной ставке для определенной начальной суммы. Вызов и результат этого метода не зависит от конкретного объекта или его состояния.

Таким образом, переменные и свойства, которые хранят состояние, общее для всех объектов класса, следует определять как статические. И также методы, которые определяют общее для всех объектов поведение, также следует объявлять как статические.

Статические члены класса являются общими для всех объектов этого класса, поэтому к ним надо обращаться по имени класса:

Следует учитывать, что статические методы могут обращаться только статическим членам класса. Обращаться к нестатическим методам, полям, свойствам внутри статического метода мы не можем.

Нередко статические поля применяются для хранения счетчиков. Например, пусть у нас есть класс User, и мы хотим иметь счетчик, который позволял бы узнать, сколько объектов User создано:

Class User { private static int counter = 0; public User() { counter++; } public static void DisplayCounter() { Console.WriteLine($"Создано {counter} объектов User"); } } class Program { static void Main(string args) { User user1 = new User(); User user2 = new User(); User user3 = new User(); User user4 = new User(); User user5 = new User(); User.DisplayCounter(); // 5 Console.ReadKey(); } }

Статический конструктор

Кроме обычных конструкторов у класса также могут быть статические конструкторы. Статические конструкторы имеют следующие отличительные черты:

    Статические конструкторы не должны иметь модификатор доступа и не принимают параметров

    Как и в статических методах, в статических конструкторах нельзя использовать ключевое слово this для ссылки на текущий объект класса и можно обращаться только к статическим членам класса

    Статические конструкторы нельзя вызвать в программе вручную. Они выполняются автоматически при самом первом создании объекта данного класса или при первом обращении к его статическим членам (если таковые имеются)

Статические конструкторы обычно используются для инициализации статических данных, либо же выполняют действия, которые требуется выполнить только один раз

Определим статический конструктор:

Class User { static User() { Console.WriteLine("Создан первый пользователь"); } } class Program { static void Main(string args) { User user1 = new User(); // здесь сработает статический конструктор User user2 = new User(); Console.Read(); } }

Статические классы

Статические классы объявляются с модификатором static и могут содержать только статические поля, свойства и методы. Например, если бы класс Account имел бы только статические переменные, свойства и методы, то его можно было бы объявить как статический:

Static class Account { private static decimal minSum = 100; // минимальная допустимая сумма для всех счетов public static decimal MinSum { get { return minSum; } set { if(value>0) minSum = value; } } // подсчет суммы на счете через определенный период по определенной ставке public static decimal GetSum(decimal sum, decimal rate, int period) { decimal result = sum; for (int i = 1; i <= period; i++) result = result + result * rate / 100; return result; } }

В C# показательным примером статического класса является класс Math, который применяется для различных математических операций.

Модификатора static - с англ. "статичный", "постоянный" - делает переменную или метод "независимыми" от объекта. Давайте рассмотрим, как модификатор применяется к методам.

Модификатор static для методов

1. Метод вызывается без создания объекта класса.

Как и в случае с полями, статические методы можно вызывать без создания объекта. Например, представим, что у нас есть класс MyClass - а внутри его два метода, статический и "обычный":

class MyClass{ public static void firstMethod (){ System.out.println("Это статический метод!"); } public void secondMethod (){ System.out.println("Это НЕ статический метод!"); } }

class MyClass {

public static void firstMethod () {

System . out . println ("Это статический метод!" ) ;

public void secondMethod () {

System . out . println ("Это НЕ статический метод!" ) ;

Мы можем вызвать оба метода, создав объект класса MyClass:

class Test { public static void main (String args){ MyClass c1 = new MyClass(); c1.firstMethod(); c1.secondMethod(); } }

class Test {

MyClass c1 = new MyClass () ;

c1 . firstMethod () ;

c1 . secondMethod () ;

Тем не менее, попробуем записать то же самое без создания объекта - вот так:

class Test { public static void main (String args){ MyClass.firstMethod(); MyClass.secondMethod(); } }

class Test {

public static void main (String args ) {

MyClass . firstMethod () ;

MyClass . secondMethod () ;

Тут мы заменили название объекта - c1 - на название класса (ведь ни одного объекта теперь у нас нет! :)).

Как Вы думаете, что произойдет?

Естественно, такой код работать не будет. Дело в том, что так обращаться можно только к одному из этих методов - статическому:

class Test { public static void main (String args){ MyClass.firstMethod(); } }

class Test {

public static void main (String args ) {

MyClass . firstMethod () ;

Если нам понадобится второй, не статический метод, понадобится создавать объект класса MyClass . Как видите, если обращаться к статическим методам и через название объекта, и название класса, код будет работать. К нестатическим методам нужно обращаться исключительно через название объектов класса.

2. Статические методы нельзя переопределять.

Как Вы помните, один из фундаментальных - это "наследование". Дело в том, что в случаях, когда нам нужно создать новый класс, который имеет много общих свойств с каким-то уже существующим, вместо того, чтобы писать все заново, можно сделать "наследника" существующего класса. Этот "наследник" будет иметь те же самые метод и переменные, что и "родитель".

Тем не менее, в классе-наследнике обычно можно переопределять существующие методы. Это значит, что можно создать метод с таким же названием, только заменить его "внутренности". Так вот, статический метод нельзя переопределить. По аналогии с переменными, можно сказать, что этот метод "один для класса и его наследников" - так же, как статическая переменная "одна для класса и всех его объектов".

3. Статическим методам нужен "статический контекст".

Есть такое правило: статический метод не может ссылаться на нестатическую переменную . Что это значит?

Представьте, что у нас в каком-то классе есть статический метод. То есть это метод, к которому, как Вы знаете, можно обращаться без создания объекта класса . Это значит, что если статический метод будет обращаться к нестатическим переменным (которые попросту "не будут существовать", потому что объект не объявлен), то возникнет ошибка. Поэтому, статические методы могут ссылаться только на статические переменные . Это гарантирует, что во время выполнения нашего метода все элементы будут инициализированы и будут работать. Именно это и называется "статическим контекстом".

Итог двух частей - зачем применяется модификатор static

Итак, Вы в общих чертах поняли, в чем заключается принцип работы модификатора static. Давайте подытожим - как он применяется?

1. Если нужно объявить любую константу - например, = 3,14 - обязательно нужно использовать static. Они объявляются с использованием сочетание "static final":public class Test {

public static final double pi = 3.14159265359 ;

2. Если Вам нужно иметь доступ к переменной или методу без создания экземпляра класса. Например, представим, что у нас есть класс Cat. Логически, нет смысла делать статической переменную "имя кошки" - ведь оно будет индивидуальным для каждого экземпляра класс - т.е. для каждого кота. И метод "мяукать" делать статическим нет смысла - ведь без кошки (без создания объекта класса) вроде как некому будет мяукать 🙂

Но если представить, что у нас есть класс Math, в котором будет метод "найти корень квадратный". Это метод мы можем сделать статическим - ведь он нам явно очень пригодится, и будет часто использоваться. А зачем писать две строчки кода (создание экземпляра класса + вызов метода), если можно обойтись одной (вызов метода)? При этом, класс Math не несет никакой логическом нагрузки, в отличии от классов Cat, Dog или Car, и нам совершенно не нужен объект Math чтобы находить квадратные корни 🙂

3. У статических переменных и методов есть еще одно полезное свойство - они общие для всех экземпляров класса .

С одной стороны, это перекликается с установкой констант - пункт 1. Например, представьте, что у нас есть класс Cat, в котором есть два поля - "количество_лап" и "количество_хвостов". Понятно, что для всех экземпляров этого класса переменная "количество_лап" будет равна 4, а "количество_хвостов" равна 1. Мы можем сделать эти поля static, потому что они будут общими. Кроме того, это нам поможет сэкономить память, потому что эти переменные не будут "создаваться заново" для каждого экземпляра. Наоборот, все эти экземпляры будут ссылаться на одну и ту же - статическую - переменную.

Тот факт, что статическая переменная общая для всех классов, можно использовать и по-другому. Например, представьте, что у нас есть класс Dog. В этом классе, у нас будет статическая переменная "количество_собак", и мы сделаем так, чтобы каждый раз при создании объекта класса Dog она увеличивалась на 1. Таким образом, мы сможем посчитать, сколько мы создавали объектов! Или, как вариант, эту цифру можно использовать для присвоения уникального идентификационного номера каждой собаке.

Теперь Вы знаете основные способы применения модификатора static. Бывают и другие, но их мы рассмотрим позже.


1. Какие элементы языка программирования C# можно объявлять статическими?

В языке программирования C# статическими могут быть:

  • классы;
  • методы;
  • переменные.

Чтобы класс (метод, переменная) был статическим, перед его объявлением ставится ключевое слово static .

2. Понятие статического класса. Какие особенности использования статических классов в программах на C#? Ключевое слово static

С точки зрения синтаксиса C# статический класс – это класс, который объявляется с ключевым словом static.

Общая форма объявления статического класса:

static class ClassName { // поля и методы класса // ... }

где ClassName – имя статического класса.

3. Свойства статического класса

Реализация программного кода статического класса ничем не отличается от программного кода обычного класса за исключением двух основных свойств. В сравнении с нестатическим классом, статический класс имеет следующие свойства (отличия):

  • нельзя создавать объекты статического класса;
  • статический класс должен содержать только статические члены.

4. Примеры, которые демонстрируют свойства статического класса

Пример 1. Пусть задан статический класс MyStaticClass . В этом классе объявляется один статический член с именем d .

// статический класс static class MyStaticClass { public static int d = 0; }

Если попробовать создать объект статического класса

// попытка создать объект статического класса MyStaticClass ms; // ошибка - нельзя создавать объект статического класса

то возникнет ошибка компиляции с сообщением:

Cannot declare a variable of static type

что означает:

Невозможно объявить переменную статического типа

Пример 2. Данный пример демонстрирует правило, что статический класс должен содержать только статические члены. Пусть задан статический класс MyStaticClass . Если в статическом классе MyStaticClass попробовать объявить нестатический член d целого типа

// статический класс static class MyStaticClass { // нестатический член, без ключевого слова static public int d = 0; // ошибка - нельзя объявлять нестатический экземпляр в статическом классе }

то во время компиляции компилятор выдаст следующую ошибку:

Cannot declare instance members in a static class

что значит

Нельзя объявлять члены-экземпляры в статическом классе

5. Примеры статических классов

Пример 1 . В данном примере демонстрируется использование статической переменной в статическом классе. Объявляется статический класс с именем Count , в котором помещается одна статическая переменная count . Эта статическая переменная есть счетчиком, который совместно используется в нестатических методах Add1() , Add2() другого класса Methods .

Программный код классов Count и Methods следующий:

// статический класс Count static class Count { public static int count; } // нестатический класс class Methods { // методы нестатического класса имеют доступ // к статической переменной count статического класса Count public void Add1() // нестатический метод { // изменение значения статической переменной Count .count++; } public static void Add2() // статический метод { Count .count = Count .count + 2; } }

В нижеследующем коде продемонстрированы обращения к переменной count класса Count и изменение значения этой переменной из методов Add1() , Add2() .

Methods M = new Methods (); // создать объект класса Methods // проверить значения статического члена int n = Count .count; // n = 0 // вызвать нестатический метод Add1() класса Methods M.Add1(); // увеличение Count.count на 1 n = Count .count; // n = 1

Как видно из примера, статический член данных Count.count есть общим для методов Add1() , Add2() класса Methods . Если бы в программе были реализованы другие классы с некоторыми методами, то к этому члену данных можно было бы обращаться из этих методов.

Если в данном примере класс Count объявить как нестатический (без ключевого слова static )

// класс Count - нестатический class Count { // статическая переменная count в классе Count - общий ресурс public static int count; } ...

то результат работы программы не изменится. Статическую переменную Count.count можно использовать как общий ресурс.

Пример 2 . Пример демонстрирует использование статического метода в нестатическом классе. Статический метод выступает общим ресурсом, который выполняет некоторую общую работу.

В примере объявляется статический метод AbsComplex() , находящий модуль комплексного числа. Метод объявляется в классе ComplexLibrary . Также объявляются 2 класса, которые содержат методы, использующие метод AbsComplex() в своих вычислениях.

// нестатический класс, содержащий статический метод class ComplexLibrary { // статический метод, вычисляет модуль комплексного числа // получает значение действительной (а) и мнимой (b) части комплексного числа public static double AbsComplex(double a, double b) { return Math .Sqrt(a * a + b * b); } } // класс, который содержит нестатический метод, использующий статический метод AbsComplex class CalcComplex1 { // нестатический метод // определяет, равны ли модули 2 комплексных чисел // данный метод использует статический метод ComplexLibrary.AbsComplex() для вычислений public bool EqualComplex(double a1, double b1, double a2, double b2) { double value1, value2; // использование статического метода AbsComplex() value1 = ComplexLibrary .AbsComplex(a1, b1); value2 = ComplexLibrary .AbsComplex(a2, b2); return value1 == value2; } } // еще один класс, который использует метод AbsComplex() из класса ComplexLibrary class CalcComplex2 { // метод, который определяет, равна ли длина комплексного числа значению 0 public bool ZeroComplex(double a, double b) { double value = ComplexLibrary .AbsComplex(a, b); return value == 0.0; } }

Использование методов классов CalcComplex1 , CalcComplex2 может быть следующим:

CalcComplex1 c1 = new CalcComplex1 (); // создать экземпляр (объект) класса CalcComplex2 c2 = new CalcComplex2 (); bool f; f = c1.EqualComplex(3, 4, 2, 5); // f = False f = c1.EqualComplex(1, 2, 2, 1); // f = True f = c1.EqualComplex(-1, 2, -2, 1); // f = True f = c2.ZeroComplex(0, 0); // f = True f = c2.ZeroComplex(1, -5); // f = False

6. Какие преимущества применения статических классов, методов и переменных в программах на C#?

Статические классы, методы и переменные эффективны в следующих случаях:

  • если нужно создать так называемые методы расширения. Методы расширения используются для расширения функций класса. Эти методы являются статическими;
  • если в программе есть некоторый общий ресурс, к которому могут иметь обращение методы разных классов что обрабатывают данный ресурс (читают или изменяют его значение). Этот общий ресурс объявляется как статическая переменная. Например, таким ресурсом может быть некоторый счетчик вызовов, метод что реализует уникальную обработку, уникальная файловая переменная (ресурс) и т.п.;
  • статические классы являются эффективными, когда нужно объединить между собой группы статических методов;
  • если нужно использовать общие скрытые (private ) данные класса и организовывать доступ к этим данным из статических и нестатических методов.

7. Чем отличается вызов статического метода от нестатического?

В любом нестатическом классе могут быть объявлены как статические методы, так и нестатические. Отличие между вызовом статического и нестатического метода класса состоит в следующем:

  • чтобы вызвать нестатический метод класса, нужно создать экземпляр (объект) этого класса. Статический метод вызывается без создания объекта класса – перед именем метода указывается имя класса, в котором этот статический метод объявлен.

Например. Задан нестатический класс Sqr , содержащий следующие два метода, которые возвращают квадрат целочисленного значения:

  • GetSqr() – нестатический метод;
  • GetSqrStatic() – статический метод.
class Sqr { // нестатический метод public int GetSqr(int x) { return x * x; } // статический метод public static int GetSqrStatic(int x) { return x * x; } }

Ниже демонстрируется вызов и использование этих методов:

// Демонстрация вызова статического и нестатического методов класса int t; // 1. Вызов нестатического метода класса Sqr // Нужно создать объект класса Sqr sc = new Sqr(); t = sc.GetSqr(7); // t = 49 // 2. Вызов статического метода класса Sqr t = Sqr .GetSqrStatic(7); // t = 49

Как видно из вышеприведенного кода, чтобы вызвать статический метод некоторого класса, перед его именем нужно указать имя этого класса.

8. Можно ли объявить скрытый (private ) статический член в некотором классе?

Да можно. В этом случае этот статический член класса будет доступным только в границах этого класса, то есть из методов этого класса. Доступ из методов других классов будет невозможен.

9. Можно ли объявлять статический член класса с модификатором доступа protected ?

Да можно. В этом случае, доступ к статического члену класса будут иметь методы класса, которые унаследованы от данного класса.

Например. Задан класс A , содержащий один статический член a , который объявлен как protected . Также задан класс B , который наследует (расширяет) класс A . Из метода SomeMethod() класса B осуществляется доступ к protected -переменной класса A .

// нестатический класс, который содержит нестатический и статический методы class A { protected static int a; } // класс B наследует (расширяет) класс A class B : A { void SomeMethod() { a = 10; // доступ к protected-переменной класса A } }

10. Может ли нестатический класс содержать статические переменные и статические методы?

Да может. Примеры использования статических методов в нестатическом классе приведены в пунктах 5 и 7.

11. Можно ли объединять статические и нестатические методы в одном классе?

Да, можно. Но только в нестатическом классе. Если класс объявлен как статический, то все методы и переменные класса должны быть также статическими (см. п. 4 — Пример 2).

Например. Пример демонстрирует объединение статического и нестатического методов класса для доступа к скрытой статической переменной t в классе. Объявляется нестатический класс CMyClass , содержащий статическую переменную, статический и нестатический методы доступа к ней.

// нестатический класс class CMyClass { // статическая переменная, объявленная как private private static int t; // статический метод, который изменяет значение статической переменной t public static void Set(int _t) { t = _t; } // нестатический метод, который читает значение статической переменной t public int Get() { return t; } }

В нижеследующем коде продемонстрирован доступ к скрытой статической переменной t класса CMyClass

// демонстрация объединения статических и нестатических членов класса int x; // 1. Доступ к скрытой (private) статической переменной через статический метод Set CMyClass .Set(777); // статическая переменная t = 777 // 2. Прочитать значение скрытой (private) статической переменной t // 2.1. Создать объект класса CMyClass mc = new CMyClass (); // 2.2. Вызвать нестатический метод Get() через экземпляр класса x = mc.Get(); // x = 777 - текущее значение статической переменной

Данный пример хорошо демонстрирует, как можно организовать работу с общими, скрытыми данными класса.

12. Можно ли в статическом методе статического класса создать объект нестатического класса?

Да, можно. Классический пример этому, функция Main() для консольных приложений. Эта функция объявлена как static . Однако, создавать экземпляры любых нестатических классов в этой функции можно.

13. Что такое статические конструкторы? Пример

Статические конструкторы позволяют инициализировать статические переменные класса.

Пример. Демонстрируется объявление статического конструктора в классе.

// класс, который содержит статический конструктор class CCount { private static int count; static CCount() { count = 7; // инициализация статической переменной count } // доступ к внутренней статической переменной count public static int Get() { return count; } }

Демонстрация работы класса CCount в некотором методе

int x; x = CCount .Get(); // x = 7

14. Какие правила (особенности) использования статических конструкторов?

При использовании статических конструкторов нужно обратить внимание на следующие правила:

  • перед статическим конструктором может указываться ключевое слово static ;
  • статические конструкторы вызываются автоматически, если класс загружается первый раз;
  • у статических конструкторов не может быть модификаторов доступа (public , private ). То есть, статические конструкторы пользуются доступом по умолчанию. Это связано с тем, что статические конструкторы вызываются в классе первыми – перед созданием первого экземпляра класса в программе;
  • статический конструктор не может иметь параметров. Если попробовать создать параметризированный статический конструктор в классе, то возникнет ошибка компиляции.

15. Можно ли из статических конструкторов инициализировать нестатические переменные класса?

Нет, нельзя. Из статических конструкторов можно инициализировать только статические переменные этого же класса. Если в этом классе также объявляются нестатические переменные, то доступа к ним из статических конструкторов нету.

Например.

class CFileName { private static string fname; // скрытая статическая переменная private string folder; // скрытая нестатическая переменная // статический конструктор static CFileName(string _fname) { fname = _fname; // доступ только к статическим переменным класса // folder = ""; // ошибка, folder - нестатическая переменная } }

Связанные темы

  • Понятие класса. Общая форма объявления класса. Объект Следующая запись Позднее связывание (late binding). Вызов метода. Пример. Класс System.Activator. Метод Invoke()

То мы можем получить к ним доступ напрямую через имя класса и оператор разрешения области видимости. Но что, если статические переменные-члены являются закрытыми? Рассмотрим следующий код:

В этом случае мы не можем напрямую получить доступ к Anything::s_value из main(), так как этот член является private. Обычно доступ к закрытым членам класса осуществляется через методы public. Хотя мы могли бы создать обычный метод для получения доступа к s_value, но нам тогда бы пришлось создавать объект этого класса для использования метода! Есть вариант получше – мы можем сделать метод статическим.

Подобно статическим переменным-членам, статические методы не привязаны к какому-либо одному объекту класса. Вот пример выше, но уже со статическим методом:

class Anything { private: static int s_value; public: static int getValue() { return s_value; } // статический метод }; int Anything::s_value = 3; // определение статической переменной-члена класса int main() { std::cout << Anything::getValue() << "\n"; }

Поскольку статические методы не привязаны к определенному объекту, то их можно вызывать напрямую через имя класса и оператор разрешения области видимости, их также можно вызвать и через объекты класса (но это не рекомендуется).

Статические методы не имеют указателя this *

У статических методов есть две интересные особенности. Во-первых, поскольку статические методы не привязаны к объекту, то они не имеют ! Здесь есть смысл, так как указатель this всегда указывает на объект, с которым работает метод. Статические методы могут не работать через объект, поэтому и указатель this не нужен.

Во-вторых, статические методы могут напрямую обращаться к другим статическим членам (переменным или функциям), но не могут к нестатическим членам. Это связано с тем, что нестатические члены принадлежат объекту класса, а статические методы — нет!

Еще пример

Статические методы можно определять вне тела класса. Это работает так же, как и с обычными методами. Например:

class IDGenerator { private: static int s_nextID; // объявление статической переменной-члена public: static int getNextID(); // объявление статического метода }; // Определение статической переменной-члена находится вне тела класса. Обратите внимание, мы не используем здесь ключевое слово static // Начинаем генерировать ID с 1 int IDGenerator::s_nextID = 1; // Определение статического метода находится вне тела класса. Обратите внимание, мы не используем здесь ключевое слово static int IDGenerator::getNextID() { return s_nextID++; } int main() { for (int count=0; count < 4; ++count) std::cout << "The next ID is: " << IDGenerator::getNextID() << "\n"; return 0; }

class IDGenerator

private :

static int s_nextID ; // объявление статической переменной-члена

public :

static int getNextID () ; // объявление статического метода

// Начинаем генерировать ID с 1

int IDGenerator :: s_nextID = 1 ;

int IDGenerator :: getNextID () { return s_nextID ++ ; }

int main ()

for (int count = 0 ; count < 4 ; ++ count )

std :: cout << "The next ID is: " << IDGenerator :: getNextID () << "\n" ;

return 0 ;

Результат:

The next ID is: 1
The next ID is: 2
The next ID is: 3
The next ID is: 4

Обратите внимание, поскольку все переменные и функции этого класса являются статическими, то нам не нужно создавать объект этого класса для работы с ним! Статическая переменная-член используется для хранения значения следующего идентификатора, который должен быть ей присвоен, а статический метод — для возврата идентификатора и его увеличения.

Предупреждение о классах со всеми статическими членами

Будьте осторожны при написании классов со всеми статическими членами. Хотя такие «чисто статические классы» могут быть полезны, но они также имеют свои недостатки.

Во-первых, поскольку все статические члены создаются только один раз, то несколько копий «чисто статического класса» быть не может (без клонирования класса и его дальнейшего переименования). Например, если нам нужны два независимых объекта IDGenerator, то это будет невозможно через «чисто статический» класс.

Во-вторых, из урока о мы знаем, что глобальные переменные опасны, поскольку любая часть кода может изменить их значения и в конечном итоге изменит другие фрагменты, казалось бы, не связанного кода (детальнее ). То же самое справедливо и для «чисто статических» классов. Поскольку все члены принадлежат классу (а не его объектам), а классы имеют глобальную область видимости, то в «чисто статическом классе» мы объявляем глобальные функции и переменные со всеми минусами, которые они имеют.

C++ не поддерживает статические конструкторы

Если вы можете инициализировать обычную переменную-член через , то по логике вещей вы должны иметь возможность инициализировать статические переменные-члены через статический конструктор. И хотя некоторые современные языки действительно поддерживают статические конструкторы именно для этой цели, C++, к сожалению, не является одним из них.

Если ваша статическая переменная может быть инициализирована напрямую, то конструктор не нужен: вы можете определить статическую переменную-член, даже если она является private. Мы делаем это в примере выше с s_nextID. Вот еще один пример:

class Something { public: static std::vector s_mychars; }; std::vector Something::s_mychars = { "o", "a", "u", "i", "e" }; // определяем статическую переменную-член

class Something

public :

static std :: vector < char > s_mychars ;

std :: vector < char > Something :: s_mychars = { "o" , "a" , "u" , "i" , "e" } ; // определяем статическую переменную-член

Если для инициализации вашей статической переменной-члена требуется выполнить код (например, цикл), то есть несколько разных способов это сделать. Следующий способ является лучшим из них. Хотя это может быть немного сложно (сейчас), и, вероятно, вам это никогда не понадобится, то вы можете спокойно пропустить оставшуюся часть этого урока, если хотите.

#include #include class Something { private: static std::vector s_mychars; public: class _nested // определяем вложенный класс с именем _nested { public: _nested() // конструктор _nested инициализирует нашу статическую переменную-член { s_mychars.push_back("o"); s_mychars.push_back("a"); s_mychars.push_back("u"); s_mychars.push_back("i"); s_mychars.push_back("e"); } }; // статический метод для вывода s_mychars static void getSomething() { for (auto const &element: s_mychars) std::cout << element << " "; } private: static _nested s_initializer; // используем статический объект класса _nested для гарантии того, что конструктор _nested выполнится }; std::vector Something::s_mychars; // определяем нашу статическую переменную-член Something::_nested Something::s_initializer; // определяем наш статический s_initializer, который вызовет конструктор _nested для инициализации s_mychars int main() { Something::getSomething(); return 0; }

#include

#include

class Something

private :

static std :: vector < char > s_mychars ;

public :

class _nested // определяем вложенный класс с именем _nested

public :

Nested () // конструктор _nested инициализирует нашу статическую переменную-член

s_mychars . push_back ("o" ) ;

s_mychars . push_back ("a" ) ;

s_mychars . push_back ("u" ) ;

s_mychars . push_back ("i" ) ;

s_mychars . push_back ("e" ) ;

В объектно-ориентированном программировании метод - это именованный блок кода, который объявляется внутри класса и может быть использован многократно. Если вы знакомы с процедурным программированием (Pascal, Basic), вспомните, что такое функция - по принципу работы у неё и метода много общего.

Хорошо написанный метод решает одну практическую задачу: находит квадратный корень из числа (как штатный метод sqrt() в Java), преобразует число в строку (метод toString()), присваивает значения полям объекта и так далее.

Новый метод сначала объявляют и определяют, затем вызывают для нужного объекта или класса.

Штатные - встроенные - методы языка работают со служебными объектами. Например, метод print в Java выводит значения в консоль. Вызывают его так:

System . out. print("Привет, мир!" );

Обратите внимание на структуру: у класса System есть поле out - поток ввода/вывода. Поле - тоже объект, и у него есть метод print(), который мы вызываем.

Ещё есть метод println(), который при выводе значений автоматически переводит каретку на следующую строку. Это избавляет от необходимости ставить «\n» в месте переноса строки.

Чтобы Java-приложение могло работать, в его базовом классе обязательно нужно объявить метод main.

public static void main(String args) { // здесь основной код и вызовы других методов }

Как видите, в качестве параметра main принимает массив строк, в данном случае - параметров запуска.

Объявление и определение метода в Java

Методы могут возвращать или не возвращать значения, могут вызываться с указанием параметров или без. Тип возвращаемых данных указывают при объявлении метода - перед его именем.

В примере ниже метод должен найти большее из двух целых чисел, поэтому тип возвращаемого значения - int:

public static int maxFinder(int a, int b) { //заголовок метода //ниже - тело метода int max; if (a < b) max = b; else max = a; return max; }

В заголовке метода сначала идут модификаторы, определяющие, на каких условиях он доступен для вызова. Об этом чуть ниже. Вернёмся к заголовку: int - возвращаемый тип, maxFinder - имя метода, в скобках - параметры.

В теле метода заводим переменную max, куда потом запишем большее число. Далее сравниваем значения, фиксируем большее в max и возвращаем.

Обратите внимание, return может работать не только с одной переменной, но и с выражением. Если бы мы не сравнивали значения, а складывали, результат можно было бы вернуть без дополнительной внутренней переменной. В теле метода была бы всего одна строка:

return a+ b;

Когда метод не должен ничего возвращать, тип возвращаемого значения указывают как void. А если методу для работы не нужны входные параметры, скобки оставляют пустыми:

static void theWarning() { System . out. println("Мне ничего не надо, и вы от меня ничего не получите." ); }

Как вызвать метод в Java

Метод с модификатором public можно вызывать из любого класса, в том числе размещенного во внешнем файле. Если нужно, чтобы метод был доступен исключительно внутри своего класса, применяют модификатор private. Есть и более мягкий вариант ограничения доступа: методы с модификатором protected доступны подклассам своего класса и другим классам из того же пакета. Чем сложнее получить доступ к методу извне, тем безопаснее - ниже риск ошибок.

Статический метод в Java принадлежит классу, а не объектам (и экземплярам) класса. Поэтому его вызывают без создания экземпляра.

Для простоты мы сделали методы публичными и статическими и разместили их в главном классе программы.

Вызывают методы двумя способами - в зависимости от того, возвращают они что-то или нет. Если да, подставляем значение, куда нам нужно:

public static void main(String args) { System . out. print(maxFinder(3 ,8 )); }

Мы вызвали maxFinder и сразу вывели результат его работы на экран. Для примера числа заданы вручную, как неименованные константы, но в реальных приложениях обычно сравнивают значения переменных.

После вызова метод управляет программой до окончания своей работы: пока в его теле не сработает оператор возврата или прерывания, либо пока не будут выполнены все находящиеся в нём инструкции.

Вызовем theWarning, который ничего не возвращает:

public static void main(String args) { theWarning(); System . out. print(“theWarning завершил свою работу. Идём дальшe. ”); }

Этот метод обходится без помощников - делает, что должен, и передаёт управление последующему коду.

Вызов метода из другого класса

А если бы maxFinder находился в отдельном классе и был не статическим? Тогда для его вызова пришлось бы сначала создать объект класса, в котором он находится. Допустим, метод находится в классе SampleClass. Вызываем:

public void main(String args) { SampleClass sc= new SampleClass (); System . out. print(sc. maxFinder(5 ,8 )); }

Статический метод вызывают через точку от имени класса - вот так:

System . out. print(SomeClass . maxFinder(5 ,8 ));

Перегрузка методов в Java

Что, если нам нужно сравнивать не только целые числа, но и числа с плавающей точкой? Реализовать это поможет перегрузка метода. Копипастим метод maxFinder в тот же класс, заменяем типы всех задействованных значений на double:

public static double maxFinder(double a, double b) { double max; //остальную часть тела метода оставляем без изменений }

Имя метода не меняем! Это и есть перегрузка: компилятор сам выберет, какую из версий метода использовать - в зависимости от того, значения какого типа сравниваем.

Ключевое слово this в методах Java

Ключевое слово this позволяет ссылаться на экземпляры класса: их переменные, методы и конструкторы. Используют this только внутри метода или конструктора экземпляра. Например, вот так можно связать входные параметры метода с одноименными параметрами конкретного экземпляра класса:

class UserData { int id, age, phone; void setProfileData (int id , int age , int phone ) { this . id= id; this . age= age; this . phone= phone; } }

Ещё пример - вызов одного конструктора из другого:

class ProfileData { int id; ProfileData () { this (100 ); } ProfileData (int id ) { this . id = id; } }

Это называется «явный вызов конструктора».

Абстрактные методы в Джаве

Абстрактным называют метод, который объявлен без реализации - он не имеет ни тела, ни даже фигурных скобок. Перед именем такого метода ставят модификатор abstract:

abstract void methodName();

Зачем он такой нужен? В качестве шаблона для других методов из других классов. Вот есть у нас абстрактный класс «Строение», а в нём - абстрактный метод «возвести». Реализовывать эти абстракции нужно через несколько неабстрактных классов-наследников и их методы. Пример: класс «Хижина» - метод «стройХижину», класс «Мост» - метод «стройМост» и др.

package ru.your.classes ; abstract class Construction { abstract void build_it (String msg1 ); abstract void sell_it (String msg2 ); } public class Hut extends Construction { // неабстрактный класс @Override // переопределяем метод void build_it (String msg1 ) { System . out. println("Хижина построена!" ); } @Override void sell_it (String msg2 ) { System . out. println("Хижина продана." ); } } public abstract class Bridge extends Construction { @Override void build_it (String msg1 ) { System . out. println("Мост построен!" ); } // Допустим, продавать объекты класса Bridge не предполагается. // Тогда sell_it можем не переопределять. // Но обязательно создадим абстрактный дочерний метод: abstract void sell_it (String msg2 ); }

Поскольку конкретной реализации у абстрактного класса нет, экземпляры его создавать нельзя. Он - шаблон, который задаёт структуру для других классов и содержит объявления методов.



Понравилась статья? Поделиться с друзьями: