Как спутники помогают людям. Для чего нужны спутники? Интересные факты о самых интересных спутниках

В широком смысле спутник - это попутчик или товарищ, тот, кто сопровождает кого-то в пути. Но спутники есть не только у людей. Планеты тоже имеют своих «попутчиков». Какие они бывают? Когда впервые появился искусственный спутник?

Возникновение спутников

В астрономии понятие «спутник» впервые появилось благодаря ученому Иоганну Кеплеру. Он употребил его ещё в 1611 году в своей работе Narratio de Iovis Satellitibus. В обычном понимании планетные спутники - это космические тела, которые вращаются вокруг планет. Они обращаются по собственной орбите под действием гравитационных сил своего «старшего компаньона».

Естественные спутники - это тела, которые появились природным путем, без участия человека. Они могут образоваться из газа и пыли или же из осколка какого-либо небесного тела, захваченные силами притяжения планеты. Попадая под влияние гравитационных сил, они преобразовываются, например, сжимаются и уплотняются, приобретают шарообразную форму (не всегда) и т. д.

Предполагается, что большинство современных спутников планет - их осколки, отколовшиеся в результате столкновения, или бывшие астероиды. Как правило, они состоят изо льда и минералов, в отличие от планет, не имеют металлического ядра, усеяны кратерами и разломами.

При открытии спутника ему присваивают номер. Затем первооткрыватель имеет право его назвать по собственному усмотрению. Традиционно их имена связывают с мифологией. Лишь у Урана они названы в честь литературных персонажей.

Спутники планет

У планет может быть самое разнообразное количество «компаньонов». У Земли он всего один - Луна, а вот у Юпитера их насчитывается 69. У Венеры и Меркурия спутников нет. Периодически появляются заявления об их обнаружении, однако все они вскоре опровергаются.

Спутник Юпитера, Ганимед, считается самым большим в Солнечной системе. Он состоит из силикатов и льда, а в диаметре достигает 5 268 километров. Полный оборот вокруг Юпитера занимает у него 7 дней и 3 часа.

У Марса два «попутчика» с впечатляющими названиями Деймос и Фобос, что с греческого языка переводится как «ужас» и «страх». Они обладают формой приближенной к трехосному эллипсоиду (длина полуосей неодинакова). Ученые утверждают, что скорость Фобоса постепенно снижается, а сам он приближается к планете. Однажды он просто упадет на Марс или же разрушится, образовав планетное кольцо.

Луна

Единственный естественный земной спутник - Луна. Это самое близкое и наиболее изученное нами небесное тело за пределами планеты Земля. Она обладает ядром, нижней, средней, верхней мантиями и корой. Также на Луне есть атмосфера.

Кора спутника состоит из реголита - остаточного грунта из пыли и каменистых обломков метеоритов. Поверхность Луны покрыта горами, бороздами, хребтами, а также морями (крупные низменности, покрытые застывшей лавой). Её атмосфера сильно разрежена, из-за чего небо над ней всегда черное и звездное.

Движение Луны вокруг Земли сложное. На него влияет не только гравитация нашей планеты, но и её сплюснутая форма, а также притяжение Солнца, которое притягивает Луну сильнее. Её полное обращение занимает 27,3 суток. Её орбита находится в плоскости эклиптики, в то время как у большинства других спутников она расположена в зоне экватора.

Луна вращается и вокруг своей оси. Однако это движение синхронизировано так, что к Земле она повернута всегда одной и той же стороной. Такое же явление наблюдается и у Плутона с его спутником Хароном.

Искусственные спутники

Искусственные спутники - это аппараты, созданные человеком и отправленные на околопланетную орбиту. Внутри них находятся различные приборы, необходимые для исследований.

Как правило, они беспилотные и управляются с земных космических станций. Чтобы запустить их в космос, используют специальные пилотируемые аппараты. Спутники бывают:

  • исследовательские - для изучения космоса и небесных тел;
  • навигационные - для определения местоположения объектов Земли, определения скорости и направления приемника сигнала (GPS, "Глонас");
  • спутники связи - передают радиосигнал между отдаленными точками на Земле;
  • метеорологические - получает данные о состоянии атмосферы для прогнозирования погоды.

Первый искусственный спутник Земли был выпущен в период Холодной войны в 1957 году. Он был отправлен от СССР и назывался "Спутник-1". Годом позже США выпустили «Эксплорер-1». Только через несколько лет за ними последовали Великобритания, Канада, Италия, Франция, Австралия и многие другие страны.

Телекоммуникационные спутники обычно размещаются на геостационарной орбите (GEO). которая является круговой орбитой с высотой в 35 786 километров над экватором Земли и следуют по направлению вращения Земли. У объекта в GEO есть орбитальный период, равный периоду вращения , поэтому для наземных наблюдателей он кажется неподвижным и занимает фиксированное положение на небе.

Спутники в GEO позволяют осуществлять постоянную связь , передавая сигналы радиочастот от стационарных антенн. Эти сигналы не очень отличаются от сигналов, которые используются при передаче широковещательного наземного телевидения и обычно имеют частоту в 3-50 раз выше. Сигнал, принимаемый спутником, усиливается и передается обратно на Землю, позволяя устанавливать связь между точками, расположенными на расстоянии тысяч километров между собою.

Особое свойство, которое делает геостационарные спутники чрезвычайно привлекательными, является их способность к передаче информации . Ретранслируемый сигнал может быть принят антеннами где угодно в зоне охвата спутника, сопоставимой с размером страны, области, континента или даже всего полушария. Любой человек у которого есть небольшая антенна 40-50 см в диаметре, может стать прямым пользователем спутника.

Спутник, работающий на геостационарной орбите, не нуждается ни в каком двигателе и его пребывание на орбите Земли может продлиться долгие годы. Трение от тонких верхних слоев атмосферы в конечном счете замедлит его и заставит опускаться все ниже и, в конце концов, он сгорит в более низких слоях атмосферы.

Если спутник запускается с большим количеством топлива, он перемещается быстрее и радиус его орбиты больше. Большая орбита означает, что угловое движение спутника вокруг Земли медленнее. Как пример, Луна, находящаяся в 380 000 км от Земли, имеет орбитальный период в 28 дней.

Спутники находящиеся на околоземной орбите (LEO), такие как , многие научные и спутники наблюдения работают в намного более низких высотах: они делают полный круг обращения вокруг Земли приблизительно за 90 минут на высотах в нескольких сот километров.

Телекоммуникационные спутники могут также находиться на LEO, будучи видимыми с любого места в течение 10-20 минут. Чтобы гарантировать непрерывность передачи информации в таком случае понадобиться развертывание десятков спутников.

Телекоммуникационные системы на LEO могут потребовать 48, 66, 77, 80 или даже 288 спутников для оказания необходимых услуг. Несколько из этих систем были развернуты, чтобы обеспечить связь для мобильных терминалов. Они используют относительно низкие частоты (1.5-2.5 ГГц), которые находятся в том же самом диапазоне, как и частоты, используемые в мобильных сетях с GSM. Тот факт, что для данного типа спутников не требуется каких-либо дорогостоящих передающих и принимающих устройств – плюс для них: никакое тщательное отслеживание спутника в этом случае не нужно. Кроме того, низкая высота минимизирует задержку времени прохождения сигнала и требует меньше мощности передатчиков, необходимых для установления связи.

Для чего нужны спутники?

Кто из нас радостно не кричал, глядя в глубокое звездное небо: - Смотри, смотри, спутник летит! И этот спутник совсем не ассоциировался ни с чем, кроме космоса.
Но теперь - совсем другая история! Спутники - это и связь, и телевидение, и определение координат, и охрана, и Интернет. И много еще чего придумают люди, чтобы космические технологи служили на благо человека.
А мы расскажем вам, почему и какие на сегодняшний день способы использования спутниковых систем наиболее популярны.

Почему иногда только спутниковые технологии могут быть единственным вариантом развития?
При устройстве наземных линий применяют провода - оптоволоконные или медные, или при беспроводной технологии - сотовые сети или радиоизернет. Все эти достаточно затратные работы имеют всегда существенные недостатки:

  • ограничение покрытия территории. Любой передатчик или приемник сигнала имеет определенную площадь работы, которая зависит от мощности и ландшафта местности;
  • вопросы модернизации сетей всегда касаются технических возможностей и целесообразности затрат финансовых ресурсов;
  • часто бывает невозможно быстро демонтировать оборудование и развернуть станцию в новом месте.
И в ряде случаев самым оправданным в техническом и финансовом смысле для обеспечения надежной и качественной связи является использование спутниковых систем.

Спутники всегда нас найдут

Без спутниковых технологий мы бы никогда не имели возможность найти друг друга на нашей большой планете.
Глобальная система определения координат позволяет точно устанавливать местоположение объектов (долготу, широту, и даже высоту над уровнем моря), а также направления движения и скорость этого объекта.
Известная американская система GPS (Global Positioning System) включает 24 искусственных спутника, широкую сеть наземных станций, которые имеют неограниченную возможность для подключения пользовательских терминалов.
GPS - система работает беспрерывно. Использовать ее может любой человек планеты, надо только приобрести GPS-навигатор . Производители предлагают портативные, автомобильные, авиационные, морские модели. Поисковые работы и спасательные операции ни в одной стране мира не обходятся без помощи GPS.

Не так давно Россия развернула свою систему навигации ГЛОНАСС, аналогичную американской, и с таким же уровнем точности определения координат.
Обе системы абсолютно доступны и бесплатны.

Спутники нас охраняют

Особенно это актуально в автомобильной индустрии. Основная охранная система успешно сочетается с каналами спутниковой связи, системой GPS и традиционными методами радиолокации.
Как работают спутниковые охранные комплексы?
Центральный блок с охранными датчиками скрытно устанавливается на автомобиле. В случае возникновения нештатной ситуации сигнал от центрального блока по каналам связи передается владельцу или диспетчеру. GPS-система помогает отслеживать маршрут, местоположение, режим движения в реальном времени.

Спутники нас развлекают

Самая актуальная и самая известная тема - спутниковое телевидение . Но мы уже настолько привыкли к тарелкам на наших домах, что практически его не замечаем. А ведь всего лишь три устройства: антенна , ресивер , конвертер доставляют нам необычайное удовольствие от просмотра любимых программ телевидения.
Разница от традиционной телевизионной антенны в том, вместо вышки выступает спутник и передает цифровой сигнал. За счет этого получается большой выбор каналов и качество изображения.

Спутники связывают нас с друзьями

Самые распространенные и известные глобальные спутниковые системы связи (ГССС): Globalstar, Inmarsat, Iridium, Thuraya. В самом начале их создания предполагалось, что эти системы организуют подвижную и стационарную телефонию там, где отсутствуют линии связи. В дальнейшем развитии появились новые возможности: выход в Интернет, передача информации в различных форматах. И ГССС стали мультисервисными.
Если описывать работу этих систем в двух словах, то получится так.
Спутник принимает сигнал абонента и передает его на ближайшую станцию на Земле. Станция определяет сигнал, выбирает маршрут и направляет его по наземным сетям или спутниковому каналу до пункта приема.
Различие между глобальными системами спутниковой связи в стоимости трафика, размерах и стоимости абонентских терминалов, площадями покрытия, а также в технических особенностях концепции самой системы.

Спутники помогают нам удобно жить

Активно развивается спутниковая система Very Small Aperture Terminal - VSAT. Эта система - как основа для конструктора: можно добавить оборудования и получить доступ в Интернет, другое оборудование - и уже объединены локальные сети пользователей на разных территориях. А еще можно - собирать данные, резервировать каналы связи, управлять различными производственными процессами, организовывать удаленные видео- и аудиоконференции.
Такую систему легко развернуть и начать работать. Качество связи, простота содержания и использования уже оценили финансовые учреждения, торговые сети, крупные промышленные предприятия.

Сеть на базе VSAT состоит их центральной управляющей станции (ЦУС), абонентских терминалов и спутника-ретранслятора.
С дальнейшим развитием неизбежно все системы станут доступнее, дешевле, удобнее и проще в управлении и понимании происходящих процессов ассимиляции нашей обыденной жизни со спутниковыми технологиями.

Теперь, мечтательно взглянув на ночное небо и увидев движущуюся звездочку, вы подумаете, что они, спутники, значительно облегчают и разнообразят жизнь. И это - замечательно.

В нашей группе в вк (vk.com/posterspbru) один из пользователей оставил такой шутливо саркастический комментарий:

- Моня, куда ви смотрите?

- В звёзды. Ви не поверите, там 8000 спутников!

- И шо, стало легче дышать?

Он навел нас на мысль о данной статье.

Пожалуй, что друг Мони прав - в прямом смысле слова дышать спутники людям не помогают. Хотя это вопрос спорный, ибо спутники способны спасти от ситуаций, в которых люди могут задохнуться. Вероятно, многие из нас редко задумываются о том, как сильно спутники влияют на нашу жизнь.

Вот некоторые из приложений, которые обеспечивают нам спутники.

1. Спутники отправляют телевизионные сигналы в дома, но они также являются основой для кабельного и сетевого ТВ. Другими словами, нет спутников - нет новостей, нет трансляций спортивных матчей, нет Олимпиады в прямом эфире и т.п. Спутники передают сигналы от центральной станции, которая генерирует программы для более мелких станций, которые передают сигналы на местном уровне. Все прямые включения возможны благодаря спутникам.

2. Спутники обеспечивают телефонную связь на самолетах и часто являются единственным каналом телефонной связи для многих сельских регионов и районов, где телефонные линии повреждены в результате стихийных бедствий. Спутники также обеспечивают первичный источник синхронизации для сотовых телефонов и пейджеров. В 1998 году отказ спутника продемонстрировал эту зависимость - временно замолчало 80% пейджеров в США, публичное национальное радио было не в состоянии распространять свои передачи по филиалам и передавало только через веб-сайт, а в вечерних новостях CBS была заморожена видео-картинка и транслировалось только аудио.

3. Спутниковые навигационные системы позволяют любому пользователю ориентироваться на местности. GPS навигаторы являются частью современного мира, независимо от того, используют их в частных автомобилях или же в коммерческих или военных целях для навигации на суше, на море или в воздухе. И, кстати, GPS навигация играет решающую роль во многих ситуациях, например, когда корабль держит курс на гавань в плохую погоду.

4. Спутники связывают компании с поставщиками, являются основой для международных видеоконференций, обеспечивают мгновенную авторизацию кредитной карточки и проведение банковских операций. Без спутника на орбите, вы не будете иметь возможность оплачивать товары в гипермаркете своей банковской картой.

5. Спутники обеспечивают метеорологов данными о погоде, с помощью которых они следят не только за тем, будет ли сегодня облачно или солнечно, но и за извержениями вулканов, ураганами, утечками газов и т.п. Возвращаясь к вопросу о Моне и его друге, в ряде случаев, спутники помогут человеку дышать, просто потому что предупредят его о том, что в место, где он находится, движется облако токсичных газов. Или спутник может спасти его в море или на суше, передав сигнал радиомаяка службам спасения.

Спутник являются одним из основных источников данных для исследований изменения климата. Спутники мониторят температуру океана и течения. Они могут указать на загрязнения воздуха, помочь организовать спасательные операции в регионах стихийных бедствий, помочь найти людей в отдаленных регионах, передавать сигналы бедствия и т.п.

6. Спутник могут обнаружить подземные воды и минеральные источники, следить за передачей питательных веществ и загрязняющих веществ из земли в водные источники, измерять температуру земли и воды, измерять рост водорослей в морях и эрозию верхнего слоя почвы на суше. Они могут эффективно контролировать крупномасштабные инфраструктуры, к примеру, топливные трубопроводы, которые нужно проверять на наличие утечек с помощью спутников, а не ручного труда (что займет многие часы). Снимки со спутников помогают разным отраслям, и даже вы можете воспользоваться Google Earth именно благодаря спутникам.

Спутники оказывают большое значение на развивающиеся страны, так как они обеспечивают их население в удаленных регионах доступом к данным, образовательной информации, медицинским сведениям и т.п. Человек может получить правильное лечение только благодаря тому, что его врач проконсультировался с более опытным коллегой по спутнику.

7. Космические исследования невозможны без спутников. Спутники-телескопы играют решающую роль в понимании множества космических явлений.

Антропогенные спутники на орбите Земли сильно влияют на нашу современную жизнь, хотя многие не осознают этого. В какой-то степени спутники помогают нам дышать свободно, обеспечивая нас данными, своевременной помощью, возможностями. Спутники делают жизнь безопаснее, обеспечивают массу современных удобств, а также помогают транслировать развлечения и изучать Землю и космос.

На внешней стороне «Спутника» четыре штыревые антенны передавали на коротковолновой частоте выше и ниже нынешнего стандарта (27 МГц). Станции слежения на Земле поймали радиосигнал и подтвердили, что крошечный спутник пережил запуск и успешно вышел на курс вокруг нашей планеты. Месяцем позже Советский Союз запустил на орбиту «Спутник-2». Внутри капсулы была собака Лайка.

В декабре 1957 года, отчаянно пытаясь идти в ногу со своими противниками по холодной войне, американские ученые попытались вывести спутник на орбиту вместе с планетой Vanguard. К сожалению, ракета разбилась и сгорела еще на стадии взлета. Вскоре после этого, 31 января 1958 года, США повторили успех СССР, приняв план Вернера фон Брауна, который заключался в выводе спутника Explorer-1 с ракетой U.S. Redstone. Explorer-1 нес инструменты для обнаружения космических лучей и обнаружил в ходе эксперимента Джеймса Ван Аллена из Университета Айовы, что космических лучей гораздо меньше, чем ожидалось. Это привело к открытию двух тороидальных зон (в конечном счете названных в честь Ван Аллена), наполненных заряженными частицами, захваченными магнитным полем Земли.

Воодушевленные этими успехами, некоторые компании начали разрабатывать и запускать спутники в 60-х годах. Одной из них была Hughes Aircraft вместе со звездным инженером Гарольдом Розеном. Розен возглавил команду, которая воплотила идею Кларка - спутник связи, размещенный на орбите Земли таким образом, что мог отражать радиоволны из одного места в другое. В 1961 году NASA заключило контракт с Hughes, чтобы построить серию спутников Syncom (синхронная связь). В июле 1963 года Розен и его коллеги увидели, как Syncom-2 взлетел в космос и вышел на грубую геосинхронную орбиту. Президент Кеннеди использовал новую систему, чтобы поговорить с премьер-министром Нигерии в Африке. Вскоре взлетел и Syncom-3, который на самом деле мог транслировать телевизионный сигнал.

Эпоха спутников началась.

Какая разница между спутником и космическим мусором?

Технически, спутник это любой объект, который вращается вокруг планеты или меньшего небесного тела. Астрономы классифицируют луны как природные спутники, и на протяжении многих лет они составили список из сотен таких объектов, обращающихся вокруг планет и карликовых планет нашей Солнечной системы. К примеру, насчитали 67 лун Юпитера. И до сих пор .

Техногенные объекты, вроде «Спутника» и Explorer, также можно классифицировать как спутники, поскольку они, как и луны, вращаются вокруг планеты. К сожалению, человеческая активность привела к тому, что на орбите Земли оказалось огромное количество мусора. Все эти куски и обломки ведут себя как и крупные ракеты - вращаются вокруг планеты на высокой скорости по круговому или эллиптическому пути. В строгом толковании определения можно каждый такой объект определить как спутник. Но астрономы, как правило, считают спутниками те объекты, которые выполняют полезную функцию. Обломки металла и другой хлам попадают в категорию орбитального мусора.

Орбитальный мусор поступает из многих источников:

  • Взрыв ракеты, который производит больше всего хлама.
  • Астронавт расслабил руку - если астронавт ремонтирует что-то в космосе и упускает гаечный ключ, тот потерян навсегда. Ключ выходит на орбиту и летит со скоростью около 10 км/с. Если он попадет в человека или в спутник, результаты могут быть катастрофическими. Крупные объекты, вроде МКС, представляют собой большую мишень для космического мусора.
  • Выброшенные предметы. Части пусковых контейнеров, шапки объективов камер и так далее.

NASA вывело специальный спутник под названием LDEF для изучения долгосрочных эффектов от столкновения с космическим мусором. За шесть лет инструменты спутника зарегистрировали около 20 000 столкновений, некоторые из которых были вызваны микрометеоритами, а другие орбитальным мусором. Ученые NASA продолжают анализировать данные LDEF. А вот в Японии уже гигантскую сеть для отлова космического мусора.

Что внутри обычного спутника?

Спутники бывают разных форм и размеров и выполняют множество различных функций, однако все, в принципе, похожи. Все они имеют металлический или композитный каркас и тело, которое англоязычные инженеры называют bus, а русские - космической платформой. Космическая платформа собирает все вместе и обеспечивает достаточно мер, чтобы инструменты пережили запуск.

У всех спутников есть источник питания (обычно солнечные батареи) и аккумуляторы. Массивы солнечных батарей позволяют заряжать аккумуляторы. Новейшие спутники включают и топливные элементы. Энергия спутников очень дорога и крайне ограничена. Ядерные элементы питания обычно используются для отправки космических зондов к другим планетам.

У всех спутников есть бортовой компьютер для контроля и мониторинга различных систем. У всех есть радио и антенна. Как минимум, у большинства спутников есть радиопередатчик и радиоприемник, поэтому экипаж наземной команды может запросить информацию о состоянии спутника и наблюдать за ним. Многие спутники позволяют массу различных вещей: от изменения орбиты до перепрограммирования компьютерной системы.

Как и следовало ожидать, собрать все эти системы воедино - непростая задача. Она занимает годы. Все начинается с определения цели миссии. Определение ее параметров позволяет инженерам собрать нужные инструменты и установить их в правильном порядке. Как только спецификация утверждена (и бюджет), начинается сборка спутника. Она происходит в чистой комнате, в стерильной среде, что позволяет поддерживать нужную температуру и влажность и защищать спутник во время разработки и сборки.

Искусственные спутники, как правило, производятся на заказ. Некоторые компании разработали модульные спутники, то есть конструкции, сборка которых позволяет устанавливать дополнительные элементы согласно спецификации. К примеру, у спутников Boeing 601 было два базовых модуля - шасси для перевозки двигательной подсистемы, электроника и батареи; и набор сотовых полок для хранения оборудования. Эта модульность позволяет инженерам собирать спутники не с нуля, а с заготовки.

Как спутники запускаются на орбиту?

Сегодня все спутники выводятся на орбиту на ракете. Многие перевозят их в грузовом отделе.

В большинстве запусков спутников запуск ракеты происходит прямо вверх, это позволяет быстрее провести ее через толстый слой атмосферы и минимизировать расход топлива. После того, как ракета взлетает, механизм управления ракеты использует инерциальную систему наведения для расчета необходимых корректировок сопла ракеты, чтобы обеспечить нужный наклон.

После того как ракета выходит в разреженный воздух, на высоту около 193 километров, система навигации выпускает небольшие ракетки, чего достаточно для переворота ракеты в горизонтальное положение. После этого выпускается спутник. Небольшие ракеты выпускаются снова и обеспечивают разницу в расстоянии между ракетой и спутником.

Орбитальная скорость и высота

Ракета должна набрать скорость в 40 320 километров в час, чтобы полностью сбежать от земной гравитации и улететь в космос. Космическая скорость куда больше, чем нужно спутнику на орбите. Они не избегают земной гравитации, а находятся в состоянии баланса. Орбитальная скорость - это скорость, необходимая для поддержания баланса между гравитационным притяжением и инерциальным движением спутника. Это примерно 27 359 километров в час на высоте 242 километра. Без гравитации инерция унесла бы спутник в космос. Даже с гравитацией, если спутник будет двигаться слишком быстро, его унесет в космос. Если спутник будет двигаться слишком медленно, гравитация притянет его обратно к Земле.

Орбитальная скорость спутника зависит от его высоты над Землей. Чем ближе к Земле, тем быстрее скорость. На высоте в 200 километров орбитальная скорость составляет 27 400 километров в час. Для поддержания орбиты на высоте 35 786 километров спутник должен обращаться со скорость 11 300 километров в час. Эта орбитальная скорость позволяет спутнику делать один облет в 24 часа. Поскольку Земля также вращается 24 часа, спутник на высоте в 35 786 километров находится в фиксированной позиции относительно поверхности Земли. Эта позиция называется геостационарной. Геостационарная орбита идеально подходит для метеорологических спутников и спутников связи.

В целом, чем выше орбита, тем дольше спутник может оставаться на ней. На низкой высоте спутник находится в земной атмосфере, которая создает сопротивление. На большой высоте нет практически никакого сопротивления, и спутник, как луна, может находиться на орбите веками.

Типы спутников

На земле все спутники выглядят похоже - блестящие коробки или цилиндры, украшенные крыльями из солнечных панелей. Но в космосе эти неуклюжие машины ведут себя совершенно по-разному в зависимости от траектории полета, высоты и ориентации. В результате, классификация спутников превращается в сложное дело. Один из подходов - определение орбиты аппарата относительно планеты (обычно Земли). Напомним, что существует две основных орбиты: круговая и эллиптическая. Некоторые спутники начинают по эллипсу, а потом выходят на круговую орбиту. Другие движутся по эллиптическому пути, известному как орбита «Молния». Эти объекты, как правило, кружат с севера на юг через полюсы Земли и завершают полный облет за 12 часов.

Полярно-орбитальные спутники также проходят через полюсы с каждым оборотом, хотя их орбиты менее эллиптические. Полярные орбиты остаются фиксированными в космосе, в то время как вращается Земля. В результате, большая часть Земли проходит под спутником на полярной орбите. Поскольку полярные орбиты дают прекрасный охват планеты, они используются для картографирования и фотографии. Синоптики также полагаются на глобальную сеть полярных спутников, которые облетают наш шар за 12 часов.

Можно также классифицировать спутники по их высоте над земной поверхностью. Исходя из этой схемы, есть три категории:

  • Низкая околоземная орбита (НОО) - НОО-спутники занимают область пространства от 180 до 2000 километров над Землей. Спутники, которые движутся близко к поверхности Земли, идеально подходят для проведения наблюдений, в военных целях и для сбора информации о погоде.
  • Средняя околоземная орбита (СОО) - эти спутники летают от 2000 до 36 000 км над Землей. На этой высоте хорошо работают навигационные спутники GPS. Примерная орбитальная скорость - 13 900 км/ч.
  • Геостационарная (геосинхронная) орбита - геостационарные спутники двигаются вокруг Земли на высоте, превышающей 36 000 км и на той же скорости вращения, что и планета. Поэтому спутники на этой орбите всегда позиционируются к одному и тому же месту на Земле. Многие геостационарные спутники летают по экватору, что породило множество «пробок» в этом регионе космоса. Несколько сотен телевизионных, коммуникационных и погодных спутников используют геостационарную орбиту.

И наконец, можно подумать о спутниках в том смысле, где они «ищут». Большинство объектов, отправленных в космос за последние несколько десятилетий, смотрят на Землю. У этих спутников есть камеры и оборудование, которое способно видеть наш мир в разных длинах волн света, что позволяет насладиться захватывающим зрелищем в ультрафиолетовых и инфракрасных тонах нашей планеты. Меньше спутников обращают свой взгляд к пространству, где наблюдают за звездами, планетами и галактиками, а также сканируют объекты вроде астероидов и комет, которые могут столкнуться с Землей.

Известные спутники

До недавнего времени спутники оставались экзотическими и сверхсекретными приборами, которые использовались в основном в военных целях для навигации и шпионажа. Теперь они стали неотъемлемой частью нашей повседневной жизни. Благодаря им, мы узнаем прогноз погоды (хотя синоптики ой как часто ошибаются). Мы смотрим телевизоры и работаем с Интернетом также благодаря спутникам. GPS в наших автомобилях и смартфонах позволяет добраться до нужного места. Стоит ли говорить о неоценимом вкладе телескопа «Хаббл» и работы космонавтов на МКС?

Однако есть настоящие герои орбиты. Давайте с ними познакомимся.

  1. Спутники Landsat фотографируют Землю с начала 1970-х годов, и по части наблюдений за поверхностью Земли они рекордсмены. Landsat-1, известный в свое время как ERTS (Earth Resources Technology Satellite) был запущен 23 июля 1972 года. Он нес два основных инструмента: камеру и многоспектральный сканер, созданный Hughes Aircraft Company и способный записывать данные в зеленом, красном и двух инфракрасных спектрах. Спутник делал настолько шикарные изображения и считался настолько успешным, что за ним последовала целая серия. NASA запустило последний Landsat-8 в феврале 2013 года. На этом аппарате полетели два наблюдающих за Землей датчика, Operational Land Imager и Thermal Infrared Sensor, собирающие многоспектральные изображения прибрежных регионов, полярных льдов, островов и континентов.
  2. Геостационарные эксплуатационные экологические спутники (GOES) кружат над Землей на геостационарной орбите, каждый отвечает за фиксированную часть земного шара. Это позволяет спутникам внимательно наблюдать за атмосферой и выявлять изменения погодных условий, которые могут привести к торнадо, ураганам, паводкам и грозовым штормам. Также спутники используются для оценки сумм осадков и накопления снегов, измерения степени снежного покрова и отслеживания передвижений морского и озерного льда. С 1974 года на орбиту было выведено 15 спутников GOES, но одновременно за погодой наблюдают только два спутника GOES «Запад» и GOES «Восток».
  3. Jason-1 и Jason-2 сыграли ключевую роль в долгосрочном анализе океанов Земли. NASA запустило Jason-1 в декабре 2001 года, чтобы заменить им спутник NASA/CNES Topex/Poseidon, который работал над Землей с 1992 года. На протяжении почти тринадцати лет Jason-1 измерял уровень моря, скорость ветра и высоту волн более 95 % свободных от льда земных океанов. NASA официально списало Jason-1 3 июля 2013 года. В 2008 году на орбиту вышел Jason-2. Он нес высокоточные инструменты, позволяющие измерять дистанцию от спутника до поверхности океана с точностью в несколько сантиметров. Эти данные, помимо ценности для океанологов, предоставляют обширный взгляд на поведение мировых климатических паттернов.

Сколько стоят спутники?

После «Спутника» и Explorer, спутники стали больше и сложнее. Возьмем, к примеру, TerreStar-1, коммерческий спутник, который должен был обеспечить передачу мобильных данных в Северной Америке для смартфонов и подобных устройств. Запущенный в 2009 году TerreStar-1 весил 6910 килограмм. И будучи полностью развернутым, он раскрывал 18-метровую антенну и массивные солнечные батареи с размахом крыльев в 32 метра.

Строительство такой сложной машины требует массы ресурсов, поэтому исторически только правительственные ведомства и корпорации с глубокими карманами могли войти в спутниковый бизнес. Большая часть стоимости спутника лежит в оборудовании - транспондерах, компьютерах и камерах. Обычный метеорологический спутник стоит около 290 миллионов долларов. Спутник-шпион обойдется на 100 миллионов долларов больше. Добавьте к этому стоимость содержания и ремонта спутников. Компании должны платить за пропускную полосу спутника так же, как владельцы телефонов платят за сотовую связь. Обходится иногда это более чем в 1,5 миллиона долларов в год.

Другим важным фактором является стоимость запуска. Запуск одного спутника в космос может обойтись от 10 до 400 миллионов долларов, в зависимости от аппарата. Ракета Pegasus XL может поднять 443 килограмма на низкую околоземную орбиту за 13,5 миллиона долларов. Запуск тяжелого спутника потребует большей подъемной силы. Ракета Ariane 5G может вывести на низкую орбиту 18 000-килограммовый спутник за 165 миллионов долларов.

Несмотря на затраты и риски, связанные с постройкой, запуском и эксплуатацией спутников, некоторые компании сумели построить целый бизнес на этом. К примеру, Boeing. В 2012 году компания доставила в космос около 10 спутников и получила заказы на более чем семь лет, что принесло ей почти 32 миллиарда долларов дохода.

Будущее спутников

Спустя почти пятьдесят лет после запуска «Спутника», спутники, как и бюджеты, растут и крепнут. США, к примеру, потратили почти 200 миллиардов долларов с начала военной спутниковой программы и теперь, несмотря на все это, обладает флотом стареющих аппаратов, ожидающих своей замены. Многие эксперты опасаются, что строительство и развертывание крупных спутников просто не может существовать на деньги налогоплательщиков. Решением, которое может перевернуть все с ног на голову, остаются частные компании, вроде SpaceX, и другие, которых явно не постигнет бюрократический застой, как NASA, NRO и NOAA.

Другое решение - сокращение размера и сложности спутников. Ученые Калтеха и Стэнфордского университета с 1999 года работают над новым типом спутника CubeSat, в основе которого лежат строительные блоки с гранью в 10 сантиметров. Каждый куб содержит готовые компоненты и может объединиться с другими кубиками, чтобы повысить эффективность и снизить нагрузку. Благодаря стандартизации дизайна и сокращению расходов на создание каждого спутника с нуля, один CubeSat может стоить всего 100 000 долларов.

В апреле 2013 года NASA решила проверить этот простой принцип и три CubeSat на базе коммерческих смартфонов. Цель состояла в том, чтобы вывести микроспутники на орбиту на короткое время и сделать несколько снимков на телефоны. Теперь агентство планирует развернуть обширную сеть таких спутников.

Будучи большими или маленькими, спутники будущего должны быть в состоянии эффективно сообщаться с наземными станциями. Исторически сложилось так, что NASA полагалось на радиочастотную связь, но РЧ достигла своего предела, поскольку возник спрос на большую мощность. Чтобы преодолеть это препятствие, ученые NASA разрабатывают систему двусторонней связи на основе лазеров вместо радиоволн. 18 октября 2013 года ученые впервые запустили лазерный луч для передачи данных с Луны на Землю (на расстоянии 384 633 километра) и получили рекордную скорость передачи в 622 мегабита в секунду.



Понравилась статья? Поделиться с друзьями: