Сравнение характеристик процессоров intel и amd. Развитие моделей процессоров AMD

Процессоры AMD архитектур Phenom II, Bulldozer и Vishera в рамках лаборатории тестировались неоднократно, изучался как их разгон, так и уровень производительности. Но сравнительных тестов «лицом к лицу» мало, поэтому трудно оценить наличие (или отсутствие) прогресса при переходе от одного поколения CPU к другому. Пора восполнить пробелы.

В данном обзоре примут участие топовые решения AMD последних лет – это AMD Phenom II X6 1100T, AMD FX-8150 и AMD FX-8350. Для полноты картины все ЦП будут протестированы не только в штатном режиме и на равных частотах, но и при максимальном разгоне. Помимо этого будет проведено сравнение энергопотребления процессоров. В качестве ориентира из стана Intel был взят Core i7-2600K.

Тестовый стенд и ПО

Тестирование проводилось на следующей конфигурации:

  • Материнские платы:
    • ASUS Crosshair V Formula;
    • ASUS Sabertooth Z77;
  • Процессоры:
    • AMD Phenom II X6 1100T 3.3 ГГц (16.5x200);
    • AMD FX-8150 3.6 ГГц (18x200);
    • AMD FX-8350 4.0 ГГц (20x200);
    • Intel Core i7-2600K 3.4 ГГц (34х100);
  • Система охлаждения: Zalman CNPS10X Performa (120*120*25, ~2000 об/мин);
  • Термоинтерфейс: Prolimatech PK-1;
  • Оперативная память: G.Skill TridentX F3-2400C10D-8GTX;
  • Видеокарта: ASUS ARES II, CrossFireX Disabled;
  • Жесткий диск: Western Digital Caviar Blue (WD500AAKS), 500 Гбайт;
  • Блок питания: Corsair CMPSU-750HX, 750 Вт;
  • Корпус: открытый тестовый стенд.

Программное обеспечение

  • Операционная система: Windows 7 Ultimate SP1 x64;
  • Драйвер видеокарты: Catalyst 13.5 beta 2;
  • Дополнительное ПО:
    • FRAPS 3.5.9, build 15586;
    • AutoHotkey 1.0.48.05.

Методика тестирования

Для теста производительности использовались следующие приложения:

  • LinX 0.6.4 + Linpack 11.0.1.005;
  • TrueCrypt 7.1a;
  • SVPmark 3.0.3a;
  • Fritz Chess Benchmark v.4.2;
  • Maxon Cinebench 11.5 x64;
  • POV-Ray v3.7 RC7;
  • x264 HD Benchmark 5.0.1;
  • TOC F@H Bench v.0.4.8.1;
  • WinRar 4.2 X64;
  • 7-Zip 9.30 X64.

В следующих играх использовались встроенные средства измерения производительности:

  • Batman: Arkham City;
  • Hitman: Absolution;
  • Metro 2033;
  • Sleeping Dogs;
  • Tomb Raider (2013).

В этих играх замер производительности проводился с помощью Autohotkey сцен:

  • Crysis 3 (Добро пожаловать в джунгли);
  • Far Cry 3 (Harvest The Jungle);
  • The Elder Scrolls V: Skyrim (Поместье Златоцвет);
  • The Witcher 2 (На передовой).

Для анализа результатов производительности в играх использовались как цифры Min/AVG FPS, так и рейтинг производительности на основе результатов frametimes.

Анализ frametimes проводился при помощи утилиты Fraps-Calc, которая позволяет увидеть основные особенности, связанные с производительностью системы в конкретно взятом приложении. Данная программа на основе среднего (AVG) FPS и характеристик его стабильности вычисляет значение так называемого рейтинга производительности. Можно сказать, что рейтинг производительности – численная характеристика комфортности игрового процесса, где под значением 1 и выше подразумевается отсутствие видимых глазу «тормозов» при показе изображения.

Каждый из процессоров был протестирован в трех режимах работы:

  • Штатный режим: полностью заводские настройки системы, полученные путем сброса BIOS, соответственно – результаты «из коробки», какие будут, если систему не трогать. Отмечу, что обе материнские платы в таком режиме использовали функции Turbo Core/Turbo Boost, и для всех ЦП устанавливали режим работы памяти DDR3-1600 11-11-11;
  • Сравнение CPU на равной частоте (4 ГГц). Режим работы памяти DDR3-1600 7-8-8-21-1T, Turbo Core/Turbo Boost выключены, частоты HT/CPU_NB у процессоров AMD выставлены на штатные значения;
  • Режим максимального разгона для каждого из процессоров.

Для AMD Phenom II X6 1100T это:

  • Частота работы процессора: 4174 МГц (260.88х16);
  • Частота работы CPU_NB: 2870 МГц;
  • Частота работы HT: 2609 МГц;
  • Режим работы памяти: DDR3-2087 8-10-10-25-1T.

Для AMD FX-8150 это:

  • Частота работы процессора: 4615 МГц (200.66х23);
  • Частота работы CPU_NB: 2609 МГц;
  • Частота работы HT: 2609 МГц;
  • Режим работы памяти: DDR3-2140 8-10-10-25-1T.

Для AMD FX-8350 это:

  • Частота работы процессора: 4592 МГц (199.66х23);
  • Частота работы CPU_NB: 2396 МГц;
  • Частота работы HT: 2596 МГц;
  • Режим работы памяти: DDR3-2396 10-11-11-28-1T.

Для Intel Core i7-2600K это:

  • Частота работы процессора: 4700 МГц (47х100) при включенном HT и 4800 МГц (48х100) при выключенном HT. Протестированы оба варианта настроек;
  • Режим работы памяти: DDR3-2133 8-10-10-25-1T.

Замеры энергопотребления были произведены с помощью мультиметра Mastech MY64 и 50 А 75 мВ шунта (75ШИП1-50-0.5) в разрыве плюса 8-pin кабеля питания. Замеры производились для двух режимов: для штатного и для режима максимального разгона процессора. В качестве нагрузки при замерах использовался LinX 0.6.4.

Тестирование производительности

LinX

Тестирование производилось с объемом задачи 20014 (3072 Мбайта памяти). Итоговый результат – лучший по итогам пяти проходов.

Гфлопс
Штатный режим


4000 МГц

Включите JavaScript, чтобы видеть графики


Разгон

Включите JavaScript, чтобы видеть графики

При сравнении участников в штатном режиме среди моделей AMD результаты расположились в порядке выхода процессоров в свет, основной прогресс наблюдается при переходе от Phenom II к Bulldozer, в то время как преимущество FX-8350 скорее объясняется 400 МГц разницей в частотах, нежели архитектурными особенностями.

Отмечу, что такой расклад сил был не всегда: на момент выхода FX-8150 тест Linpack еще не поддерживал наборы инструкций новых ЦП, и результаты процессоров AMD FX были в пару раз ниже, чем в современных версиях Linpack’а, соответственно результаты Phenom II были для AMD FX недостижимы. Что касается результатов i7-2600K, то можно сказать, что он работает не в полную силу – включенный HT в данном тесте снижает производительность, в итоге CPU Intel находится посередине между FX-8150 и FX-8350.

При сравнении на равных частотах разница между процессорами AMD существенно уменьшается: результаты Phenom II X6 заметно подросли (немудрено, ведь у него штатно самая низкая частота работы среди испытуемых – 3300 МГц), а FX-8150 и FX-8350 сравнялись. i7-2600К в таком режиме уже вырывается вперед.

После перехода на режим максимальных частот статус-кво не изменился. Phenom II позади, а FX-8150 и FX-8350 поменялись местами согласно достигнутым частотам, все же частотный потенциал у Vishera чуть ниже. Что касается Core i7-2600K, то его преимущество только усилилось, благодаря более высокому разгону, и особенно заметно – при выключении HT.

TrueCrypt 7.1a

Многопоточный бенчмарк, который измеряет скорость операций шифрования. За результат взята Mean Speed в тесте AES-Twofish-Serpent. Результат – лучший по итогам пяти замеров.

True Crypt AES-Twofish-Serpent

Мбайт/с
Штатный режим

Включите JavaScript, чтобы видеть графики


4000 МГц

Включите JavaScript, чтобы видеть графики


Разгон

Включите JavaScript, чтобы видеть графики

Для штатного режима работы расклад сил примерно похож на тот, что наблюдался при рассмотрении результатов LinX – что при переходе от Phenom II к Bulldozer, что при переходе от Bulldozer к Vishera производительность разнится значительно, и прогресс не может не радовать. А что изменилось – так это уровень производительности Core i7-2600K, который на сей раз находится уже между Phenom II X6 1100T и FX-8150, а не между FX-8150 и FX-8350.

Переход к сравнению на равных частотах на сей раз не меняет выводов – статус-кво на сей раз сохраняется и при 4 ГГц. AMD FX-8350 остается вне конкуренции, а i7-2600K становится даже ближе к Phenom II X6 1100T, чем к FX-8150.

Результаты с максимальным разгоном каких-либо неожиданностей не приносят. Разве что интересно видеть показатели i7-2600K с выключенным HT, где уровень производительности становится даже ниже, чем у Phenom II X6 1100T, несмотря на более чем 600 МГц разницу в частоте работы процессоров. Можно отметить, что вопреки более низким частотам FX-8350 остается лидером по сравнению с FX-8150, видимо, архитектурные оптимизации пошли на пользу.

SVPmark 3.0.3a

SVP – программное обеспечение, призванное увеличить плавность воспроизводимого видео путем расчета дополнительных кадров. Тест многопоточный и весьма требовательный к производительности процессора. Результат – лучший по итогам пяти замеров.

SVPmark 3.0.3a

Баллы
Штатный режим

Включите JavaScript, чтобы видеть графики


4000 МГц

Включите JavaScript, чтобы видеть графики


Разгон

Включите JavaScript, чтобы видеть графики

При сравнении процессоров на штатных частотах результаты мало чем отличаются от двух предыдущих тестов производительности: ЦП AMD очередной раз выстроились согласно иерархии, при этом наибольшая разница наблюдается при переходе от Phenom II X6 1100T к FX-8150. Intel Core i7-2600K расположился между FX-8350 и FX-8150, ближе к последнему.

На равных частотах можно увидеть, что, несмотря на нивелирование разницы в частотах, расклад сил в случае с решениями AMD остается прежним. Но в то же время i7-2600К уже лидирует, пусть и с минимальной разницей.

Тот же расклад среди моделей AMD сохраняется и при максимальном разгоне CPU, в то время как i7-2600K упрочняет лидерство. Правда, при выключенном HT он уже не лидирует, а всего лишь конкурирует с FX-8150.

Fritz Chess Benchmark v.4.2

Данный тест заставляет процессор обрабатывать шахматные алгоритмы и весьма сильно нагружает современные ЦП. Итоговый результат – лучший по итогам пяти замеров.

Fritz Chess Benchmark

knodes/s
Штатный режим

Включите JavaScript, чтобы видеть графики


4000 МГц

Включите JavaScript, чтобы видеть графики


Разгон

Включите JavaScript, чтобы видеть графики

Расклад сил здесь выглядит куда интереснее, нежели в предыдущих тестах, причем интересные цифры можно видеть уже для штатного режима работы процессоров.

В нем видно, что Phenom II X6 1100T и FX-8150 очень близки, при том, что частота работы FX-8150 выше на 300 МГц, в то время как преимущество FX-8350 над ними не столь значительно. Это подтверждают результаты сравнения на равных частотах, где Phenom II среди тройки флагманов AMD оказывается самым производительным. Видимо, полноценные шесть ядер для данного теста предпочтительнее, нежели четыре «двуядерных» модуля у AMD FX.

Не стоит забывать, что частотный потенциал Phenom II сильно ниже, и в итоге при максимальном разгоне все три процессора AMD показывают примерно одинаковый результат. При большей/меньшей удачливости конкретных экземпляров CPU лучший результат мог бы показать любой из участников.

Что касается результатов Core i7-2600K, то он лидирует во всех режимах, кроме максимального разгона при выключенном HT.

Maxon Cinebench 11.5 x64

Данный бенчмарк анализирует скорость рендеринга тестовой сцены, начисляя процессору баллы производительности. Итоговый результат – лучший по итогам трех замеров.

Cinebench R11.5

CPU
Баллы
Штатный режим

Включите JavaScript, чтобы видеть графики


4000 МГц

Включите JavaScript, чтобы видеть графики


Разгон

Включите JavaScript, чтобы видеть графики

Результаты во многом похожи на Fritz Chess Benchmark. Опять при сравнении решений AMD на штатных частотах неплохо держится Phenom II X6 1100T, особенно на фоне AMD FX-8150. Разница лишь в том, что на сей раз FX-8350 показывает более уверенные результаты. При переходе на 4 ГГц среди ЦП AMD ожидаемо начинает лидировать шестиядерный «старичок», хотя FX-8350 к нему все же ближе, чем было в случае с шахматным тестом.

При переходе к максимальному разгону результаты процессоров уже согласуются с поколениями архитектур, хотя разница в итоговых результатах все же невелика, особенно это касается X6 1100T и FX-8150.

i7-2600K, как и в шахматном тесте, лидирует во всех режимах кроме максимального разгона с выключенным HT.

POV-Ray v3.7 RC7

Программа построения изображений методом трассировки лучей. Использовался встроенный бенчмарк. Итоговый результат – время рендеринга сцены, лучший результат по итогам трех замеров.

POV-Ray v3.7 RC7

Секунды
Штатный режим

Включите JavaScript, чтобы видеть графики


4000 МГц

Включите JavaScript, чтобы видеть графики


Разгон

Включите JavaScript, чтобы видеть графики

Уже по результатам штатного режима видно, что в отличие от двух предыдущих тестов здесь Phenom II уже не блистает, и такие значения не объяснить одними только тактовыми частотами.

Это подтверждают результаты при частоте 4 ГГц, где процессоры расположились по поколениям своих архитектур, с близким уровнем прироста производительности при переходе от одного к другому. При максимальном разгоне разница между FX-8150 и Phenom II X6 1100T только увеличивается.

Что касается Intel Core i7-2600K, то в данном тесте он показывает невзрачные результаты. При равных частотах его уровень производительности близок к Phenom II X6 1100T, а FX-8150 и FX-8350 производительнее процессора Intel во всех тестовых режимах. При этом с максимальным разгоном при выключенном HT представитель Core i7 и вовсе остается аутсайдером.

Процессор - это основной компонент компьютера, без него ничего работать не будет. С момента выпуска первого процессора эта технология развивается семимильными темпами. Менялись архитектуры и поколения процессоров AMD и Intel.

В одной из предыдущих статей мы рассматривали , в это статье мы рассмотрим поколения процессоров AMD, рассмотрим из чего все начиналось, и как совершенствовалось пока процессоры не стали такими, как они есть сейчас. Иногда очень интересно понять как развивалась технология.

Как вы уже знаете, изначально, компанией, которая выпускала процессоры для компьютера была Intel. Но правительству США не нравилось, что такая важная для оборонной промышленности и экономики страны деталь выпускается только одной компанией. С другой стороны, были и другие желающие выпускать процессоры.

Была основана компания AMD, Intel поделилась с ними всеми своими наработками и разрешила AMD использовать свою архитектуру для выпуска процессоров. Но продлилось это недолго, спустя несколько лет Intel перестала делиться новыми наработками и AMD пришлось улучшать свои процессоры самим. Под понятием архитектура мы будем подразумевать микроархитектуру, расположение транзисторов на печатной плате.

Первые архитектуры процессоров

Сначала кратко рассмотрим первые процессоры, выпускаемые компанией. Самым первым был AM980, он был полным восьмиразрядного процессора Intel 8080.

Следующим процессором был AMD 8086, клон Intel 8086, который выпускался по контракту с IBM, из-за которого Intel была вынуждена лицензировать эту архитектуру конкуренту. Процессор был 16-ти разрядным, имел частоту 10 МГц, а для его изготовления использовался техпроцесс 3000 нм.

Следующим процессором был клон Intel 80286- AMD AM286, по сравнению с устройством от Intel, он имел большую тактовую частоту, до 20 МГц. Техпроцесс уменьшился до 1500 нм.

Дальше был процессор AMD 80386, клон Intel 80386, Intel была против выпуска этой модели, но компании удалось выиграть иск в суде. Здесь тоже была поднята частота до 40 МГц, тогда как у Intel она была только 32 МГц. Техпроцесс - 1000 нм.

AM486 - последний процессор, выпущенный на основе наработок Intel. Частота процессора была поднята до 120 МГц. Дальше, из-за судебных разбирательств AMD больше не смогла использовать технологии Intel и им пришлось разрабатывать свои процессоры.

Пятое поколение - K5

AMD выпустила свой первый процессор в 1995 году. Он имел новую архитектуру, которая основывалась на ранее разработанной архитектуре RISC. Обычные инструкции перекодировались в микроинструкции, что помогло очень сильно поднять производительность. Но тут AMD не смогла обойти Intel. Процессор имел тактовую частоту 100 МГц, тогда как Intel Pentium уже работал на частоте 133 МГц. Для изготовления процессора использовался техпроцесс 350 нм.

Шестое поколение - K6

AMD не стала разрабатывать новую архитектуру, а решила приобрести компанию NextGen и использовать ее наработки Nx686. Хотя эта архитектура очень отличалась, здесь тоже использовалось преобразование инструкций в RISC, и она тоже не обошла Pentium II. Частота процессора была 350 МГц, потребляемая мощность - 28 Ватт, а техпроцесс 250 нм.

Архитектура K6 имела несколько улучшений в будущем, в K6 II было добавлено несколько наборов дополнительных инструкций, улучшивших производительность, а в K6 III добавлен кєш L2.

Седьмое поколение - K7

В 1999 году появилась новая микроархитектура процессоров AMD Athlon. Здесь была значительно увеличена тактовая частота, до 1 ГГц. Кэш второго уровня был вынесен на отдельный чип и имел размер 512 кб, кэш первого уровня - 64 Кб. Для изготовления использовался техпроцесс 250 нм.

Было выпущено еще несколько процессоров на архитектуре Athlon, в Thunderbird кэш второго уровня вернулся на основную интегральную схему, что позволило увеличить производительность, а техпроцесс был уменьшен до 150 нм.

В 2001 году были выпущены процессоры на основе архитектуры процессоров AMD Athlon Palomino c тактовой частотой 1733 МГц, кэшем L2 256 Мб и техпроцессом 180 нм. Потребляемая мощность достигала 72 Ватт.

Улучшение архитектуры продолжалось и в 2002 году компания выпустила на рынок процессоры Athlon Thoroughbred, которые использовали техпроцесс 130 нм и работали на тактовой частоте 2 ГГц. В следующем улучшении Barton была увеличена тактовая частота до 2,33 ГГц и увеличен в два раза размер кэша L2.

В 2003 году AMD выпустила архитектуру K7 Sempron, которая имела тактовую частоту 2 ГГц тоже с техпроцессом 130 нм, но уже дешевле.

Восьмое поколение - K8

Все предыдущие поколения процессоров были 32 битной разрядности и только архитектура K8 начала поддерживать технологию 64 бит. Архитектура притерпела много изменений, теперь процессоры теоретически могли работать с 1 Тб оперативной памяти, контроллер памяти переместили в процессор, что улучшило производительность по сравнению с K7. Также здесь была добавлена новая технология обмена данными HyperTransport.

Первые процессоры на архитектуре K8 были Sledgehammer и Clawhammer, они имели частоту 2,4-2,6 ГГц и тот же техпроцесс 130 нм. Потребляемая мощность - 89 Вт. Дальше, как и с архитектурой K7 компания выполняла медленное улучшение. В 2006 году были выпущены процессоры Winchester, Venice, San Diego, которые имели тактовую частоту до 2,6 ГГц и техпроцесс 90 нм.

В 2006 году вышли процессоры Orleans и Lima, которые имели тактовую частоту 2,8 ГГц, Последний уже имел два ядра и поддерживал память DDR2.

Наряду с линейкой Athlon, AMD выпустила линейку Semron в 2004 году. Эти процессоры имели меньшую частоту и размер кэша, но были дешевле. Поддерживалась частота до 2,3 ГГц и кэш второго уровня до 512 Кб.

В 2006 году продолжилось развитие линейки Athlon. Были выпущены первые двухъядерные процессоры Athlon X2: Manchester и Brisbane. Они имели тактовую частоту до 3,2 ГГц, техпроцесс 65 нм и потребляемую мощность 125 Вт. В том же году была представлена бюджетная линейка Turion, с тактовой частотой 2,4 ГГц.

Десятое поколение - K10

Следующей архитектурой от AMD была K10, она похожа на K8, но получила много усовершенствований, среди которых увеличение кэша, улучшение контроллера памяти, механизма IPC, а самое главное - это четырехъядерная архитектура.

Первой была линейка Phenom, эти процессоры использовались в качестве серверных, но они имели серьезную проблему, которая приводила к зависанию процессора. Позже AMD исправили ее программно, но это снизило производительность. Также были выпущены процессоры в линейках Athlon и Operon. Процессоры работали на частоте 2,6 ГГц, имели 512 кб кэша второго уровня, 2 Мб кэша третьего уровня и были изготовлены по техпроцессу 65 нм.

Следующим улучшением архитектуры была линейка Phenom II, в которой AMD выполнила переход техпроцесс на 45 нм, чем значительно снизила потребляемую мощность и расход тепла. Четырехъядерные процессоры Phenom II имели частоту до 3,7 ГГц, кэш третьего уровня до 6 Мб. Процессор Deneb уже поддерживал память DDR3. Затем были выпущены двухъядерные и трех ядерные процессоры Phenom II X2 и X3, которые не набрали большой популярности и работали на более низких частотах.

В 2009 году были выпущены бюджетные процессоры AMD Athlon II. Они имели тактовую частоту до 3.0 ГГц, но для уменьшения цены был вырезан кэш третьего уровня. В линейке был четырехъядерный процессор Propus и двухъядерный Regor. В том же году была обновлена линейка продуктов Semton. Они тоже не имели кэша L3 и работали на тактовой частоте 2,9 ГГц.

В 2010 были выпущены шести ядерный Thuban и четырехъядерный Zosma, которые могли работать с тактовой частотой 3,7 ГГц. Частота процессора могла меняться в зависимости от нагрузки.

Пятнадцатое поколение - AMD Bulldozer

В октябре 2011 года на замену K10 пришла новая архитектура - Bulldozer. Здесь компания пыталась использовать большое количество ядер и высокую тактовую частоту чтобы опередить Sandy Bridge от Intel. Первый чип Zambezi не смог даже превзойти Phenom II, уже не говоря про Intel.

Через год после выпуска Bulldozer, AMD выпустила улучшенную архитектуру, под кодовым именем Piledriver. Здесь была увеличена тактовая частота и производительность примерно на 15% без увеличения потребляемой мощности. Процессоры имели тактовую частоту до 4,1 ГГц, потребляли до 100 Вт и для их изготовления использовался техпроцесс 32 нм.

Затем была выпущена линейка процессоров FX на этой же архитектуре. Они имели тактовую частоту до 4,7 ГГц (5 ГГц при разгоне), были версии на четыре, шесть и восемь ядер, и потребляли до 125 Вт.

Следующее улучшение Bulldozer - Excavator, вышло в 2015 году. Здесь техпроцесс был уменьшен до 28 нм. Тактовая частота процессора составляет 3,5 ГГц, количество ядер - 4, а потребление энергии - 65 Вт.

Шестнадцатое поколение - Zen

Это новое поколение процессоров AMD. Архитектура Zen была разработана компанией с нуля. Процессоры выйдут в этом году, ожидается что весной. Для их изготовления будет использоваться техпроцесс 14 нм.

Процессоры будут поддерживать память DDR4 и выделять тепла 95 Ватт энергии. Процессоры будут иметь до 8 ядер, 16 потоков, работать с тактовой частотой 3,4 ГГц. Также была улучшена эффективность потребления энергии и была заявлена возможность автоматического разгона, когда процессор подстраивается в под возможности вашего охлаждения.

Выводы

В этой статье мы рассмотрели архитектуры процессоров AMD. Теперь вы знаете как они развивались процессоры от AMD и как обстоят дела на данный момент сейчас. Вы можете видеть что, некоторые поколения процессоров AMD пропущены, это мобильные процессоры, и мы их намерено исключили. Надеюсь, эта информация была полезной для вас.

Лучший процессор для игр | Эффект снижения выгоды

Цены на процессоры верхнего уровня растут стремительно, но прирост производительности в играх будет всё меньше и меньше. Поэтому вряд ли стоит рекомендовать процессор дороже, чем Core i5-7600K. Тем более что при наличии хорошего кулера эту модель можно разогнать до 5 ГГц – если требуется более высокая производительность.

Однако есть небольшое количество игр, которые раскрывают возможности процессоров Core i7 с технологией Hyper-Threading. Мы считаем, что тенденция оптимизации игр под несколько ядер будет продолжаться, поэтому мы добавили в список Core i7-5820K. В большинстве игр разницы между Core i7 и Core i5 практически не будет, но если вы относитесь к энтузиастам, которым нужны перспектива на будущее и высокая производительность в многопоточных приложениях, этот CPU может потребовать дополнительных затрат.

С появлением интерфейса LGA 2011-v3 появились все основания построить на его основе непревзойдённую игровую платформу. У процессоров на базе Haswell-E больше доступного кэша, а также на четыре ядра больше по сравнению с ведущими моделями с разъёмом LGA 1150/1155. К тому же, благодаря четырёхканальному контроллеру, обеспечивается большая пропускная способность памяти. Благодаря 40 линиям PCIe третьего поколения, доступных на процессорах Sandy Bridge-E, платформа изначально поддерживает два слота х16 и один слот х8, либо один слот х16 и три слота х8, удаляя потенциальные "узкие места" в конфигурациях CrossFire или SLI на три и четыре видеокарты.

Хотя всё вышесказанное звучит впечатляюще, оно не обязательно приводит к существенному повышению производительности в современных играх. Наши тесты демонстрируют совсем небольшую разницу между Core i5-4690K на LGA 1150 за $240 и Core i7-4960X на LGA 2011 за $1000, даже когда установлены три видеокарты в SLI. Выходит, что пропускная способность памяти и PCIe не слишком влияют на производительность текущих систем на архитектуре Sandy Bridge.

По-настоящему потенциал Haswell-E проявляется в играх, сильно нагружающих процессор, таких как мультиплеер в Battlefield 1. Если вы используете три или четыре видеокарты, вполне возможно, что у вас уже достаточно производительности. Разогнанный Core i7-5960X или Core i7-5930K могут помочь оставшейся части платформы догнать чрезвычайно мощную видеосистему.

В общем, хотя мы и не рекомендуем покупать процессор дороже Core i5-7600K с точки зрения соотношения цена/производительность (сэкономленную сумму деньги можно потратить на графический адаптер и системную плату), всегда найдутся те, кто не пожалеет денег в стремлении добиться максимально возможной производительности.

Лучший процессор для игр | Сравнительная таблица

Как насчёт других процессоров, которых нет в списке наших рекомендаций? Стоит ли их покупать или нет?

Подобные вопросы вполне уместны, поскольку доступность разных моделей и цены на них меняются ежедневно. Как узнать, будет ли процессор, на который вы положили глаз, лучшей покупкой в данном ценовом диапазоне?

Мы решили помочь вам в этом нелёгком деле, представив таблицу иерархии CPU, где процессоры одного уровня игровой производительности находятся на одной строчке. В верхних строчках приведены самые производительные геймерские CPU и по мере продвижения вниз по строчкам производительность снижается.

Предлагаемая иерархическая таблица различных моделей процессоров Intel и AMD изначально была основана на средней производительности каждой из них в нашем наборе тестов. Позже мы добавили в качестве одного из критериев оценки новые игровые данные, однако следует иметь в виду, что разные игры ведут себя по-разному из-за уникальных особенностей их программного кода. К примеру, некоторые из них чрезвычайно зависимы от мощности графической подсистемы, но другие положительно реагируют на большее число ядер, кэш-памяти или даже на конкретную архитектуру.

У нас нет возможности протестировать каждый CPU на рынке, поэтому в некоторых случаях распределение мест зависит от результатов аналогичных моделей. По сути, эта иерархическая таблица полезна в качестве общего руководства по выбору, но она не является универсальным средством сравнения разных процессоров . За более подробной информацией обращайтесь к (англ.) или к регулярно обновляемому разделу " Лучший процессор для игр: текущий анализ рынка ".

Возможно, вы заметили, что мы разбили на два уровня раздел флагманских процессоров и на одном из них разместили несколько четырёхъядерных моделей AMD. Учитывая, что множество старых платформ могут использоваться с графическими подсистемами нескольких разных поколений, мы хотели выделить самые высокопроизводительные модели, чтобы поддержать баланс между системой и видеоускорителем. К примеру, на данный момент, любой владелец Core i7 поколения Sandy Bridge почувствует существенный прирост при переходе на Kaby Lake или Broadwell-E. А помещение флагманских процессоров AMD серии FX на одну ступень с несколькими Core i7 и более старыми Core i5 означает повышение их статуса.

Иерархия процессоров Intel и AMD | Таблица


Intel AMD
Core i7 -3770, -3770K, -3820, -3930K, -3960X, -3970X, -4770, -4771, -4790, -4770K, -4790K, -4820K, -4930K, -4960X, -5775C, -5820K, 5930K, -5960X, -6700K, -6700, -7700K, -7700, -6800K, -6850K, -6900K, -6950X
Core i5 -7600K, -7600, -7500, -7400, -6600K, -6600, -6500, -5675C, -4690K, 4670K, -4590, -4670, -4570, -4460, -4440, -4430, -3570K, -3570, -3550
Core i7 -2600, -2600K, -2700K, -965, -975 Extreme, -980X Extreme, -990X Extreme
Core i5 -3470, -3450P, -3450, -3350P, -3330, 2550K, -2500K, -2500, -2450P, -2400, -2380P, -2320, -2310, -2300
FX -9590, 9370, 8370, 8350, 8320, 8300, 8150
Core i7 -980, -970, -960
Core i7 -870, -875K
Core i3 -7350K, -7320, -7300, -7100, -4360, -4350, -4340, -4170, -4160, -4150, -4130, -3250, -3245, -3240, -3225, -3220, -3210, -2100, -2105, -2120, -2125, -2130
Pentium G4620, G4600, G4560
FX -6350, 4350
Phenom II X6 1100T BE, 1090T BE
Phenom II X4 Black Edition 980, 975
Core i7 -860, -920, -930, -940, -950
Core i5 -3220T, -750, -760, -2405S, -2400S
Core 2 Extreme QX9775, QX9770, QX9650
Core 2 Quad Q9650
FX -8120, 8320e, 8370e, 6200, 6300, 4170, 4300
Phenom II X6 1075T
Phenom II X4 Black Edition 970, 965, 955
A10 -6800K, 6790K, 6700, 5800K, -5700, -7700K, -7800, -7850K, 7870K
A8 -3850, -3870K, -5600K, 6600K, -7600, -7650K
Athlon X4 651K, 645, 641, 640, 740, 750K, 860K
Core 2 Extreme QX6850, QX6800
Core 2 Quad Q9550, Q9450, Q9400
Core i5 -650, -655K, -660, -661, -670, -680
Core i3 -2100T, -2120T
FX -6100, -4100, -4130
Phenom II X6 1055T, 1045T
Phenom II X4 945, 940, 920
Phenom II X3 Black Edition 720, 740
A8 -5500, 6500
A6 -3650, -3670K, -7400K
Athlon II X4 635, 630
Core 2 Extreme QX6700
Core 2 Quad Q6700, Q9300, Q8400, Q6600, Q8300
Core 2 Duo E8600, E8500, E8400, E7600
Core i3 -530, -540, -550
Pentium G3470, G3460, G3450, G3440, G3430, G3420, G3260, G3258, G3250, G3220, G3420, G3430, G2130, G2120, G2020, G2010, G870, G860, G850, G840, G645, G640, G630
Phenom II X4 910, 910e, 810
Athlon II X 4 620, 631
Athlon II X3 460
Core 2 Extreme X6800
Core 2 Quad Q8200
Core 2 Duo E8300, E8200, E8190, E7500, E7400, E6850, E6750
Pentium G620
Celeron G1630, G1620, G1610, G555, G550, G540, G530
Phenom II X4 905e, 805
Phenom II X3 710, 705e
Phenom II X2 565 BE, 560 BE, 555 BE, 550 BE, 545
Phenom X4 9950
Athlon II X 3 455, 450, 445, 440, 435, 425
Core 2 Duo E7200, E6550, E7300, E6540, E6700
Pentium Dual-Core E5700, E5800, E6300, E6500, E6600, E6700
Pentium G9650
Phenom X4 9850, 9750, 9650, 9600
Phenom X3 8850, 8750
Athlon II X2 265, 260, 255, 370K
A6 -5500K
A4 -7300, 6400K, 6300, 5400K, 5300, 4400, 4000, 3400, 3300
Athlon 64 X2 6400+
Core 2 Duo E4700, E4600, E6600, E4500, E6420
Pentium Dual-Core E5400, E5300, E5200, G620T
Phenom X4 9500, 9550, 9450e, 9350e
Phenom X3 8650, 8600, 8550, 8450e, 8450, 8400, 8250e
Athlon II X2 240, 245, 250
Athlon X2 7850, 7750
Athlon 64 X2 6000+, 5600+
Core 2 Duo E4400, E4300, E6400, E6320
Celeron E3300
Phenom X4 9150e, 9100e
Athlon X2 7550, 7450, 5050e, 4850e/b
Athlon 64 X2 5400+, 5200+, 5000+, 4800+
Core 2 Duo E5500, E6300
Pentium Dual-Core E2220, E2200, E2210
Celeron E3200
Athlon X2 6550, 6500, 4450e/b,
Athlon X2 4600+, 4400+, 4200+, BE-2400
Pentium Dual-Core E2180
Celeron E1600, G440
Athlon 64 X 2 4000+, 3800+
Athlon X2 4050e, BE-2300
Pentium Dual-Core E2160, E2140
Celeron E1500, E1400, E1200

В настоящее время наша таблица состоит из 13 уровней. Нижняя половина списка в большинстве своём уже неактуальна: эти чипы будут демонстрировать недостаточную производительность в современных играх, вне зависимости от установленной видеокарты. Если ваш процессор относится к этой половине списка, то апгрейд действительно повысит удовольствие от игр.

В действительности, только чипы в пяти верхних уровнях можно считать сегодня подходящими для игр. И в этой верхней части таблицы смысл в апгрейде появляется лишь тогда, если вы выбираете процессор как минимум двумя уровнями выше. В противном случае улучшений будет явно недостаточно, чтобы оправдать затраты на новый ЦП, материнскую плату и память, не говоря уже о видеокарте и накопителях, о замене которых вы также задумаетесь.

Почти каждый год на рынок выходит новое поколение центральных процессоров Intel Xeon E5. В каждом поколении попеременно меняются сокет и технологический процесс. Ядер становится всё больше и больше, а тепловыделение понемногу снижается. Но возникает естественный вопрос: «Что даёт новая архитектура конечному пользователю?»

Для этого я решил протестировать производительность аналогичных процессоров разных поколений. Сравнивать решил модели массового сегмента: 8-ядерные процессоры 2660, 2670, 2640V2, 2650V2, 2630V3 и 2620V4. Тестирование с подобным разбросом поколений является не совсем справедливым, т.к. между V2 и V3 стоит разный чипсет, память нового поколения с большей частотой, а самое главное - нет прямых ровесников по частоте среди моделей всех 4-х поколений. Но, в любом случае, это исследование поможет понять в какой степени выросла производительность новых процессоров в реальных приложениях и синтетических тестах.

Выбранная линейка процессоров имеет много схожих параметров : одинаковое количество ядер и потоков, 20 MB SmartCache, 8 GT/s QPI (кроме 2640V2) и количество линий PCI-E равное 40.

Для оценки целесообразности тестирования всех процессоров, я обратился к результатам тестов PassMark .

Ниже привожу сводный график результатов:

Так как частота существенно отличается, сравнивать результаты не совсем корректно. Но несмотря на это, с ходу напрашиваются выводы:

1. 2660 эквивалентен по производительности 2620V4
2. 2670 превосходит по производительности 2620V4 (очевидно, что за счёт частоты)
3. 2640V2 проседает, а 2650V2 бьёт всех (также из-за частоты)

Я поделил результат на частоту и получил некое значение производительности на 1 ГГц:

Вот тут уже результаты получились более интересные и наглядные:

1. 2660 и 2670 - неожиданный для меня разбег в рамках одного поколения, 2670 оправдывает только то, что общая производительность у него весьма высока
2. 2640V2 и 2650V2 - весьма странный низкий результат, который хуже чем у 2660
3. 2630V3 и 2620V4 - единственный логический рост (видимо как раз за счёт новой архитектуры...)

Проанализировав результат я решил отсеять часть неинтересных моделей, которые не имеют ценности для дальнейшего тестирования:

1. 2640V2 и 2650V2 - промежуточное поколение, и не очень удачное, на мой взгляд - убираю из кандидатов
2. 2630V3 - отличный результат, но стоит необоснованно дороже 2620V4, учитывая аналогичную производительность и, к тому же - это уже уходящее поколение процессоров
3. 2620V4 - адекватная цена (сравнивая с 2630V3), высокая производительность и, самое главное - это единственная модель 8-ядерного процессора последнего поколения с Hyper-threading в нашем списке, поэтому однозначно оставляем для дальнейших тестов
4. 2660 и 2670 - отличный результат в сравнении с 2620V4. На мой взгляд, именно сравнение первого и последнего (на данный момент) поколения в линейке Intel Xeon E5 представляет особый интерес. К тому же у нас на складе остались достаточные запасы процессоров первого поколения, поэтому для нас это сравнение весьма актуально.

Стоимость серверов на базе процессоров 2660 и 2620V4 может отличаться почти до 2 крат не в пользу последних, поэтому сравнив их производительность и выбрав сервер на процессорах V1 - можно существенно сократить бюджет на покупку нового сервера. Но об этом предложении я расскажу после результатов тестирования.

Для тестирования было собрано 3 стенда:

1. 2 x Xeon E5-2660, 8 x 8Gb DDR3 ECC REG 1333, SSD Intel Enterprise 150Gb
2. 2 x Xeon E5-2670, 8 x 8Gb DDR3 ECC REG 1333, SSD Intel Enterprise 150Gb
3. 2 x Xeon E5-2620V4, 8 x 8Gb DDR4 ECC REG 2133, SSD Intel Enterprise 150Gb

PassMark PerformanceTest 9.0

При отборе процессоров на тесты я уже пользовался результатами синтетических тестов, но сейчас интересно сравнить эти модели более детально. Сравнение сделал группами: 1-ое поколение против 4-го.

Более подробный отчёт о тестировании позволяет сделать некоторые выводы:

1. Математика, в т.ч. и с плавающей точкой, в основном зависит от частоты. Разница в 100 МГц позволила 2660 опередить 2620V4 в расчётных операциях, в шифровании и компрессии (и это не смотря на существенную разницу в частоте памяти)
2. Физика и вычисления с использованием расширенных инструкций на новой архитектуре выполняются лучше, не смотря на низкую частоту
3. Ну и, разумеется, тест с использованием памяти прошёл в пользу процессоров V4, так как в данном случае соревновались уже разные поколения памяти - DDR4 и DDR3.

Это была синтетика. Посмотрим что покажут специализированные бенчмарки и реальные приложения.

Архиватор 7ZIP


Тут результаты перекликаются с предыдущим тестом - прямая привязка к частоте процессора. При этом не важно, что установлена более медленная память - процессоры V1 уверенно берут первенство частотой.

CINEBENCH R15

CINEBENCH - это бенчмарк для оценки рабочих характеристик компьютера для работы с профессиональной программой для создания анимации MAXON Cinema 4D.

Xeon E5-2670 вытянул по частоте и побил 2620V4. А вот E5-2660, имеющий не столь видимое преимущество по частоте, проиграл процессору 4-го поколения. Отсюда вывод - этот софт использует полезные дополнения новой архитектуры (хотя возможно всё дело в памяти...), но не на столько, чтобы это было решающим фактором.

3DS MAX + V-Ray

Для оценки производительности процессоров при рендеринге в реальном приложении я взял связку: 3ds Max 2016 + V-ray 3.4 + реальная сцена с несколькими источниками света, зеркальными и прозрачными материалами, и картой окружения.

Результаты получились схожи с CINEBENCH: Xeon E5-2670 показал самое низкое время рендеринга, а 2660 не смог обойти 2620V4.

1С: SQL/File

В заключение тестирования прилагаю результаты тестов gilev для 1С.

При тестировании базы с файловым доступом уверенно лидирует процессор E5-2620V4. В таблице приведены средние значения 20 прогонов одного и того же теста. Разница между результатами каждого стенда в случае с файловой базой была не больше 2%.

Однопоточный тест базы SQL показал весьма странные результаты. Разница получилась незначительной, учитывая разную частоту у 2660 и 2670, и разную частоту у DDR3 и DDR4. Была попытка оптимизировать настройки SQL, но результаты оказались хуже, чем было, поэтому я решил тестировать все стенды на базовых настройках.

Результаты многопоточного теста SQL оказались ещё куда более странными и противоречивыми. Максимальная скорость 1 потока в МБ/с была эквивалентна индексу производительности в предыдущем однопоточном тесте.

Следующим параметром была максимальная скорость (всех потоков) - результат получился практически идентичным у всех стендов. Так как результаты разных прогонов сильно колебались (+-5%) - иногда они были у разных стендов с существенным отрывом как в одну так и в другую сторону. Одинаковые средние результаты многопоточного теста SQL наводят меня на 3 мысли:

1. Такая ситуация вызвана неоптимизированной конфигурацией SQL
2. SSD стал узким местом системы и не позволил процессорам разогнаться
3. Разницы между частотой памяти и процессоров под эти задачи почти нет (что крайне маловероятно)

Также оказался необъяснимым результат по параметру «Рекомендуемое кол-во пользователей». Средний результат у 2660 оказался выше всех - и это при низких результатах всех тестов.
По этому вопросу также буду рад увидеть Ваши комментарии.

Выводы

Результаты нескольких разносторонних вычислительных тестов показали, что частота процессора в большинстве случаев оказалась важней поколения, архитектуры и даже частоты памяти. Безусловно есть современный софт, который использует все улучшения новой архитектуры. Например, транскодирование видео иногда производится в т.ч. с использованием инструкций AVX2.0, но это специализированное ПО - а большинство серверных приложений по прежнему привязаны к количеству и частоте ядер.

Разумеется я не заявляю, что разницы между процессорами нет совсем никакой, я лишь хочу отметить, что для определённых приложений нет смысла в «плановом» переходе на новое поколение.

Если Вы со мной не согласны или у Вас есть предложения для тестирования - стенды пока не разобраны, и я буду рад произвести тестирование Ваших задач.

Экономическая выгода

Как я уже писал в начале статьи - мы предлагаем линейку серверов на базе процессоров Xeon E5 первого поколения, которые по стоимости существенно бюджетней серверов на E5-2620V4.
Это такие же новые серверы (не путать с б/у) с гарантией 3 года.

Ниже привожу ориентировочный расчет.

Процессорная индустрия не менее динамична, нежели остальные сферы информационных технологий. Постоянные доработки последних микроархитектур и выпуск новых пусть и не сделали на начало 2016 года революционных прорывов, но дали нам с вами более широкий выбор в рамках определенных классов центральных процессоров.

В очередной раз обсудим то, какой же из процессоров лучше - Intel или AMD , а также проведем сравнение процессоров для системы под разные задачи. Сразу скажу о том, что мнение в данной статье субъективно и может быть как поддержано, так и опровергнуто любым человеком и без последствий. В данной статье не будет защиты той или иной стороны, всё будет основано на реальном положении вещей мирового рынка центральных процессоров.

В дополнение немного затронем сегмент мобильных решений. Конкретные ответы для систем под определённые виды задач будут приведены в выводах, советую продержаться и дочитать до конца.

Для удобства и быстрого перехода приведено содержание статьи:

AMD vs Intel. Небольшое историческое введение

Итак, поехали. Компании Intel Corporation и Advanced Micro Devices были основаны примерно в одно время: в 1968 и 1969 годах соответственно. То есть за спиной у обеих компаний огромный опыт как производства процессоров, так и конкуренции между собой. Но почему-то в среде простых «юзеров» Intel гораздо известнее. И даже в некоторых допотопных технических учебных заведениях подробно изучают старенький и наболевший всем технарям-студентам процессор i8080. АМД в это время просто выпускали клоны 8080 в виде процессоров Am9080. А первым удачным процессором AMD собственной разработки можно назвать процессор Am2900.

Ладно, не будем о грустных процессорах-старичках с частотой в 3 МГц, выполненных по техпроцессу 6 мкм и оснащённых 8-битовой шиной данных. А лучше, будем потихоньку двигаться, непосредственно, к теме нашего обсуждения, и к современным процессорам с более радостными характеристиками .

Мифы про AMD

Сразу хотелось бы развеять мифы о «горящих» и «не подлежащих» разгону процессорах AMD. На сегодняшний день такие заявления основаны на «голых» слухах. Около десяти лет назад было множество прецедентов выхода из строя процессоров типа Athlon 1400, которые просто сгорали после того, как кулер, охлаждающий радиатор процессора, выходил из строя. Да, тогда это было актуально, но говорить об этом, когда на дворе 2015 год и процессоры AMD оснащены отличной технологией тепловой защиты, – просто кощунство.


Да и тепловой режим зависит от различных факторов, а не только от самого процессора, к примеру, факторами влияния может быть эффективность кулера процессора, а также качество нанесения термопасты . По поводу разгона не буду много говорить и приводить конкретные модели процессоров, а просто констатирую тот факт, что в продаже имеются процессоры из серии «Black Edition», которые ориентированы на разгон самим производителем. Так же и с новыми FX от AMD, они не просто зарекомендовали себя, как пригодные к хорошему оверклоку, но и могут похвастаться мировыми рекордами в разгоне.

С негативными мифами про AMD покончено, теперь можно вспомнить и про Intel. Негативных мифов про Intel вроде бы и не было. В те времена, когда «горели» Атлоны, можно было лишь услышать лестные отзывы про Pentium. Этот процессор знали и почитали многие, и даже сейчас на вопрос: «Какой у тебя компьютер?». Иногда можно услышать гордый ответ - « Pentium » .

2016 год. Сравнение основных линеек процессоров от AMD и Intel

Резко заявлю о том, что по состоянию на 2016 год, среди AMD и Intel можно уверенно выделить явного лидера хит-парада процессоров. И на основе данной статьи, вы сможете подобрать и купить процессор, действительно, с учетом всех потребностей. Если, в статье какая видеокарта лучше мы не смогли выделить масштабного лидера, то здесь всё немного яснее. Но этот лидер будет озвучен с довольно обобщёнными нотками, так как специфику рабочей и бюджетной сферы никто не отменял, но об этом позже.


В этом подразделе статьи мы пройдёмся по основным линейкам процессоров от двух компаний и проанализируем их работу при различных видах нагрузок, а уже в выводах, как и обещалось, будут приведены рекомендации для выбора процессора под те или иные задачи. Соответственно с учётом конкретных задач преимущество тех или иных процессоров будет существенно меняться.

К описанию и разрешению дилеммы «что лучше: amd или intel» следует подходить комплексно и под разными углами обзора, ведь обычному потребителю необходимо одно, а заядлому геймеру или оверклокеру - совсем другое. Сразу скажу, что ответ будет динамический, и я буду стараться обновлять статью по мере появления на свет радикально новых линеек процессоров от обеих компаний, ведь в этом году ведёт один, а в следующем – другой.

Начнём немного издалека. Когда компания Intel тихо и мирно продолжала выпускать хорошие и качественные процессоры, на свет появилась линейка AMD Athlon 64 c доработанной микроархитектурой К8. Именно после появления этих процессоров многие заговорили о AMD, а многие даже съехали с Intel в ту пору. Несколько лет назад были более-менее равные «бои» процессоров Phenom на К10 с соответствующими моделями Core 2 Duo и Core 2 Quad от Intel. В эти периоды и появилось распространённое мнение о том, что процессоры AMD в среднем и бюджетном ценовом диапазоне превосходят Интел по соотношению цена/качество. Для AMD всё вроде бы шло очень и очень неплохо, но тут появилась микроархитектура Nehalem, которая нанесла весомый удар в сторону AMD и произвела революцию на рынке процессоров.


Core i3/i5/i7 на Sandy Bridge стали активно раскупаться, подымая Intel всё выше и выше над AMD. Немного спустя Intel поддала жару в огонь, выпустив в свет процессоры на Sandy Bridge второго поколения. Они оказались не менее удачными, чем предшественники: многим полюбились i5-2400, 2500, i7-2700, да и было за что. Не будем вникать в микроархитектуру , только скажу, что разработчики Intel хорошенько её доработали, добавив множество различных технологий и особенностей.

Прошло немного времени, и Intel анонсировала процессоры третьего поколения – Ivy Bridge. Не остались без внимания процессоры intel core i5-3570K , i7-3770K и многие другие, хотя существенными улучшениями они похвастаться не могут. Но учитывая тот факт, что цены на Ivy и Sandy Bridge не разделены пропастью, то более разумным будет вариант покупки немного доточенных Ivy Bridge.

А что же в это время предприняла компания AMD? AMD невозмутимо продолжает дорабатывать микроархитектуру K10, потихоньку добавляя частоты к Phenom. Хоть процессоры AMD Phenom II 9хх очень неплохо смотрятся на рынке процессоров, в силу своих возможностей и цены, но они уже морально устарели и им довольно сложно конкурировать с новой продукцией от Интел.

Потом анонсируется линейка гибридных процессоров AMD Llano со ставкой на интегрированную графику прямо на кристалле процессора. Решение довольно интересное, учитывая, что графика Llano показывает хорошую производительность, но в вычислительных тестах данные гибридные чипы показывают результат двухъядерных Intel Core i3-2100. Некоторым вариант экономии на видеокарте придётся по вкусу, тем более экономия существенная и процессоры Llano будут отмечены нами в итогах как интересный бюджетный вариант. В довесок была выпущена более новая линейка процессоров A-серии – это процессоры Trinity, они предлагают более мощную графику, нежели Llano, что выглядит ещё более лакомо для домашних систем начального уровня. Графика Trinity по праву считается лучшей в мире среди интегрированных на кристалл процессора.

В топовом сегменте дела пошли не очень. Все с нетерпением ждали феерического выезда легендарных процессоров на архитектуре Bulldozer. Все ждали революции на рынке процессоров, а вместо этого на свет явился сыроватый 8-ядерный продукт. К тому же, эти 8 ядер являются не совсем полноценными, так как каждые два ядра в микроархитектуре Bulldozer разработчики объединили в 1 модуль, который можно сравнивать (условно) с одним ядром процессоров Ivy Bridge. Но ещё раз подчеркну, что это сравнение очень условно, так как от видов задач эта самая условность может быть разбита в пух и прах как в пользу Intel, так и AMD.


Затем была анонсирована доработка Bulldozer - процессоры Vishera с микроархитектурой Piledriver – которая, по словам представителей AMD, дает прирост в районе 10-15%, при этом имея меньшее TDP и всё это подкрепляя очень заманчивой ценой.

Безусловно, нельзя не отметить, что и процессоры Bulldozer и, в особенности, их улучшенный вариант – Vishera – показывают великолепные результаты при многопоточной нагрузке, это чётко видно в рабочих тестах 3d max:


Чем меньше, тем лучше

FX8350 обходит i7-3770K. Примерно такая же ситуация будет наблюдаться во всех приложениях, которые могут создать 8 качественных потоков, то есть в большинстве пакетов для работы с графикой, а также при любых других видах сложных вычислений. Если проанализировать результаты, то видно, что отрыв от i7-3770K незначительный, но учитывая приблизительные цены данных моделей – 340$ у i7-3770K и 209$ у FX-8350, я думаю, вопросы о более выгодном процессоре именно для таких видов задач должны быть сняты. Также, для этих задач будет интересен ещё более дешёвый FX-8320.

Но когда на процессор ложится однопоточная нагрузка, то за счёт всё той же недоработанной микроархитектуры бульдозер частенько проигрывает оппонентам от Intel. Те же самые игры обычно не могут загрузить более четырех ядер, что в результате выставляет напоказ недостатки ядер Bulldozer по отдельности. Процессоры AMD Vishera немного исправили ситуацию, но всё равно отставание заметно. Для наглядности приведу немного игровых тестов:



Безусловно, игровая нагрузка в большей мере ложится на видеокарту, но и процессор здесь является не менее важным звеном. Тем более, что частенько проскакивают достаточно требовательные к ресурсам процессора игры.

Выборка приведенных тестов слишком мала, но общая тенденция результатов тестирования как на отечественных так и зарубежных сайтах именно такая: из тестов чётко видно, что i5-3570K уверенно обходит оппонентов от AMD в лице новых FX-4300, FX-6300 и FX-8350.

Уже начиная с 2015 года Саннивелская компания AMD, на которую уже практически не полагалось никаких надежд в плане новшеств, конечно же, заявила о представлении новой линейки, именуемой как Carrizo. Представителями было оговорено, что Carizzo является шестым поколением, но вот почему в учет не идет малоизвестный Brazos - этого непонятно. Ну да ладно, стоит выделить следующие моменты этой нашумевшей линейки, представленной в Германии.

  1. Carizzo размещается исключительно на одном кристалле, а до этого южный мост и графический чип располагались на двух кристаллах. Функциональность устройства основывается на 28 нанометрах по процессу Global Foundries.
  2. Четыре ядра имеют архитектуру Excavator. Частота процессора была поднята только на 1 МГц, по сравнению с предшествующей Steamroller, поэтому производительность обработки данных на одно ядро, увы, возросла незначительно, но в целом все не так плохо - прирост в районе 15%, при сохранении в целом предыдущих принципов обработки данных.
  3. Обновилась и графическая сторона. В частности, графическое ядро получило 512 Кб памяти второго уровня. Существенно замечены улучшения производительности при согласовании с тесселяцией, и что очень важно, цветопередача не имеет потерь.

В это же время компания Intel не поскупилась на создание и выпуск нового поколения процессоров, которые получили название Broadwell. И стоит сразу заметить, что каждый поклонник интеловской команды получил огорчение. Процессор представляет собой основу от Haswell, выполненный по техпроцессу в 14-нм. Никаких изменений не получила функциональность ядер и микроархитектура, поэтому десктопный Broadwell получился мягко говоря не на славу.

Из плюсов можно выделить снижение тепловыделения. Также добавлено интегрированное графическое ядро Iris Pro 6200. Вот это, пожалуй, и все основные важные добавки к работе процессора от компании Intel.

Но если рассматривать в общем, по большинству игр, то процессоры AMD также вполне неплохо себя чувствуют.

В этих тестах для нас главное не конкретика FPS двух игр, а общая тенденция отставания процессоров FX в играх. В выводах мы отметим этот факт, что пойдёт в пассив AMD.

Центральные процессоры для ноутбуков

Intel уже достаточно продолжительное время царит в сегменте процессоров для ноутбуков, причём царит очень основательно. В ноутбуках как бюджетного, так и топового класса красуются процессоры Сore ix, которые мы расхваливали немного выше.

Выход процессоров Llano не очень сильно изменил расстановку сил, но внёс некое разнообразие в бюджетный сегмент ноутбуков. А вот по-настоящему хорошим выпадом от AMD можно назвать именно процессоры Trinity. Ещё более мощная интегрированная графика за доступную цену, к тому же эти процессоры поддерживают технологию Dual Graphics. Данная технология позволяет интегрированной графике процессоров Trinity работать совместно с дискретным адаптером. В итоге связка «интегрированная графика Trinty + дискретная Radeon HD 7670M» смотрится весьма привлекательно, учитывая суммарные показатели графической производительности и невысокую стоимость.


Можно смело утверждать, что в бюджетном сегменте ноутбуков, AMD Trinity A4 и A6 серии, являются очень интересными для покупателя, так как гарантируют более мощную графику, нежели интегрированная графика в процессорах Intel.

В среднем мобильном сегменте процессоры A10 в паре с HD 7670 также будут радовать своей графической производительностью. Но уже в борьбе с определёнными Core i5 у них будут проблемы на вычислительном фронте. При всём этом средний класс ноутбуков остается подвержен жёсткой конкуренции и очень многие остановят свой выбор на A10 + HD 7670. Так что в среднем и бюджетном сегменте определить, какой процессор лучше для ноутбука, не так-то просто.

Возвращаясь все к тому же Carrizo от AMD, который был выпущен в 2015 году, то стоит заметить, что система имеет уже интегрированный видеодекодер UVD-6. Благодаря этому декодеру появилась возможность просмотра видео в форматах H.264 и Н.265. Как было заявлено производителями Carrizo, это первый в мире чип для ноутбуков, которому подвластно декодирование H.265.

Intel также не дремлет в вопросе графики для ноутбуков, но существенно отстает от AMD, как ни странно, бы это звучало. Так, было проведено тестирование, на котором соревновались Carrizo от AMD и Broadwell от Intel, воспроизводившие видео 4-К в формате HEVC. Результаты были ошеломительными, при воспроизведении видео ноутбук с AMD-шным Carrizo не загружал процессор даже и наполовину, в тот час, как его конкурент Inrel был загружен на 80, а иногда и на 100%.

Таким образом, если еще в 2013 году лидировала Intel, то ситуация на 2015 год несколько изменилась, и теперь уважающий себя юзер предпочтет ноутбук с большей графической производительностью под управлением процессоров Carrizo от AMD.

Хотелось бы отметить, что приобретение высокопроизводительного ноутбука – очень неоднозначная штука, советую ознакомиться со статьей «ноутбук или настольный ПК », которая не даст вам оступиться на этом обманчивом фронте.

Ладно, не будем зацикливаться на процессорах для ноутбуков, а лучше перейдем к выводам.

AMD и Intel.Какие процессоры лучше? Выводы

Осталось подвести небольшие итоги в битве AMD против Intel. Из последнего вышесказанного все становится понятным, но давайте судить объективно, ведь каждый имеет право на ошибку, и будем верить, что эта ошибка будет отработана. Уделим внимание классу выполняемых задач этими процессорами, чтобы в итоге судить полноценно.

Процессор для бюджетной системы с нетребовательными задачами

Для начала ответим что лучше amd или intel в бюджетном сегменте рынка. Бюджетные системы довольно широко распространены. Это могут быть как домашние компьютеры, так и офисные системы, где начальник пытается купить парк машин по цене конфигурации одной нормальной системы.
Здесь, мне кажется, стоит отдать преимущество AMD. Тот же самый новый Trinity, к примеру A4-5300 за 50-60$, будет отлично смотреться в бюджетных домашних системах, особенно при попытках нагрузить систему графическими задачами, такими как игры. Ну или на худой конец, можно укомплектовать систему самым дешевым Llano, за 40$.


Для офисного парка машин Trinity будут также неплохим решением, но здесь их поджимают Pentium G, так как в вычислительных задачах показывают более высокий уровень производительности за счёт архитектуры Sandy Bridge второго поколения и немного большего объёма кэш-памяти .

AMD-шная Carrizo 2015 года станет отличным решением не только для домашнего использования, но и вполне может занимать почетные места среди офисных машин. Но главной целью AMD был выпуск совершенно нового процессора, который удовлетворит потребности функциональности ноутбуков.

Интеловская компания с Broadwell, который стал «нелюбимым ребенком», во многом проигрывает позиции AMD-шникам. Так, в частности хоть Broadwell и напичкан мощным графическим ядром Iris Pro 6200, но функциональность на уровне офисных расчетов желает лучшего. Broadwell недалеко ушел от Sandy Bridge, который действительно справлялся с вычислительными задачами на должном уровне.

Так что для офисного парка машин хорошим выбором будет бюджетный процессор Intel Pentium G на Sandy Bridge, выпущенный в 2013 году или же новая работа Carrizo 2015 года от AMD.

Процессор для игрового компьютера

Класс игровых компьютеров наиболее всеобъёмлющий, потому что охватывает как средний? так и топовый сегмент процессоров, здесь уже нет места интегрированной графике, и системы обычно комплектуются производительными видеокартами, которые как раз таки и берут на себя основную часть работы в играх. Но от процессора также зависит многое, так как баланс в системе никто не отменял.


Из ранее проанализированных результатов тестов можно уверенно говорить, что для среднестатистической игровой системы необходим Intel. Если Вам не жаль немного переплатить, и при этом вы хотите получить определённый задел на будущие год-два в большинстве игр, то именно Core i5 на Ivy Bridge в большинстве случаев будет наиболее оптимальным вариантом, нежели любой из Vishera. Ни в коем случае не хочу сказать, что Vishera абсолютно не подходит для игр. В силу своей цены тот же FX-6300 будeт очень неплохим вариантом для недорогой игровой системы, правда тут его поджимает Core i3.

Но первенство для игровых нагрузок и домашней системы типа «под все задачи» всё же за Сore i5, как мейнстрим-вариант можно назвать Core i5-3570 или же i5-3470 . В особо экстремальных игровых вариантах, ещё более продвинутым решением будет Core i7, но на данном этапе развития игровой индустрии и классическом варианте использования его производительность в большинстве случаев избыточна.

Так что для хорошей игровой системы рекомендован Intel core i5 (в отдельных случаях i7), а для более дешёвой игровой системы неплохо подойдёт FX-6300 – здесь уже нужно смотреть на второстепенные задачи и отталкиваясь от них, отдавать преимущество тому или иному варианту.

Процессор для ресурсоемкой вычислительной работы

Обработка и кодирование видео/аудио, работа в сложных графических приложениях, а также любые другие виды сложной вычислительной работы или работа в серверах начального уровня – всё это зачастую может быть разделено на множество потоков.


Как мы уже говорили ранее, многопоточность – это конёк FX-8350. При своей небольшой стоимости данный процессор показывает уровень i7-3770K, а иногда и обходит его в вышеуказанных видах задач. Поэтому для рабочих нагрузок, при нежелании траты лишних средств – только FX-8350.

Безусловно, если имеются лишние средства, то можно переплатить и получить универсальный i7-3770K, как для работы, так и для игр, что также будет разумным вариантом, но всё же по известному всем соотношению «цена/производительность» для сложных вычислительных задач FX-8350 уверенно обходит оппонентов от Intel.

Также, не стоит забывать про «hard-решение» от Intel, в виде того же Core i7-3970X. Этот процессор лучший вариант из десктопных: он может всё и лучше всех, но вот только одного он не может – быть дешёвым, его стоимость около 1000$. Безупречный экстрим-вариант для любителей бросаться деньгами.

Приведенные здесь варианты процессоров для разных видов задач очень обобщены и не могут в точности отражать каждый отдельный случай, где могут возникать второстепенные, но не менее важные задачи, а также существенное влияние может оказывать бюджет на покупку.

Если же говорить о финансовой стороне вопроса, то AMD-шный процессор Carrizo входит в ценовые рамки от 350 до 750 американских долларов, что обусловлено категорией применения. Соответственно ноутбуковые процессоры стоят сравнительно дороже десктопных, поэтому выбирать опять же приходится согласно накопленного бюджета. Но только стоит заметить, что Carrizo, основанный на восьми графических и четырех процессорных ядрах в дополнение имеет технологию по оптимизации работы с питанием 15 W. Благодаря чему новое устройство работает в 2,4 раза быстрее, по сравнению с предыдущим поколением Kaveri.

Минимальная стоимость интеловских процессоров 2015 года составляет 380 долларов, что вовсе не соответствует тем параметрам, которые присущи в Broadwell. В частности, основную роль по стоимости обусловило графическое ядро последнего поколения Iris Pro 6200; в немногом улучшенная микроархитектура, которая попросту усовершенствовала предшественника Haswell, а также высокий показатель снижения тепловыделения. И это, пожалуй, и все, чем может похвалиться Intel о своей последней работе.

Вот такое получилось сравнение процессоров и ответ на вопрос: «Какие процессоры лучше, Intel или AMD?»

Возможно, есть некоторые спорные моменты, буду очень рад вашим корректировкам или дополнениям в комментариях, но без холиварного и оскорбительного уклона.

Напоследок дружно пожелаем компании AMD в скором времени приятно удивить нас микроархитектурой Streamroller, а также стараться давать достойный отпор Intel, ведь монополия и завышенные цены нам не нужны.

Компании Intel пожелаем снижения цен на свои процессоры и продолжения выпуска таких же хороших, мощных и качественных продуктов.

А вам, дорогие друзья, пожелаю стабильной работы «сердец» ваших компьютеров, независимо от того кем и когда они были выпущены. Всего наилучшего!



Понравилась статья? Поделиться с друзьями: