И транзисторного импульсного регулятора напряжения. Импульсный регулируемый стабилизатор напряжения

В предлагаемой статье сравниваются три различных подхода к созданию стабилизатора напряжения с выходным напряжением 5 В и максимальным током нагрузки 100 мА, получающего питание от шины 24 В. Синхронный понижающий преобразователь сравнивается с интегральным линейным регулятором и с линейным регулятором на дискретных элементах. Сравнение размеров, КПД, тепловых характеристик, переходных характеристик, шумов, сложности схемы и ее стоимости поможет конструкторам сделать выбор варианта, наилучшим образом отвечающего требованием конкретного приложения.

Условия сравнения

Напряжение 5 В требуется в большинстве промышленных приложений, использующих шину 24 В, для питания, например, логических схем и низковольтных микропроцессоров. Ток 100 мА был выбран как достаточный для большинства подобных нагрузок. Однако на принятие решения о выборе импульсного или линейного регулятора может повлиять уровень рассеиваемой мощности. Изображенные на Рисунках 1, 2 и 3 схемы собраны на общей печатной плате с использованием абсолютно одинаковых конденсаторов емкостью 1 мкФ на входе и 4.7 мкФ на выходе.

В схеме на Рисунке 1 используется выпускаемый синхронный понижающий преобразователь с интегрированными силовыми MOSFET. Заметим, что этой схеме не требуется фиксирующий диод, но нужны индуктивность, пять конденсаторов и четыре резистора, часть из которых устанавливается в цепь частотной компенсации петли ОС. Схема настроена таким образом, чтобы в ней можно было использовать такие же входные и выходные конденсаторы, как и в линейных схемах, изображенных на Рисунках 2 и 3.

Конструкция, изображенная на Рисунке 2, основана на популярном, давно ставшим стандартом отрасли линейном стабилизаторе с широким диапазоном входных напряжений и выходным током до 1.5 А. В схеме использованы два внешних резистора и два конденсатора. Существенное различие между входным и выходным напряжениями и, соответственно, большая рассеваемая мощность, требуют использования микросхемы в корпусе с низким тепловым сопротивлением (DDPak).

Для реализации схемы на дискретных приборах, показанной на Рисунке 3, требуются транзистор, стабилитрон, два внешних конденсатора и четыре резистора. Стабилитрон с напряжением пробоя 5.6 В подключен к базе NPN транзистора. Падение на переходе база-эмиттер уменьшает выходное стабилизированное напряжение примерно до 5 В. Внешние резисторы принимают на себя рассеяние части избыточной мощности, облегчая тепловой режим транзистора.

Таблица 1 позволяет сравнить три конструкции по количеству используемых компонентов и необходимой площади печатной платы.

Таблица 1. Площадь платы и количество компонентов.

Вследствие необходимости обеспечения надлежащего температурного рельефа на печатной плате, линейные регуляторы требуют большей площади. При максимальной нагрузке каждый линейный регулятор должен рассеивать мощность порядка 2 В. Согласно эмпирическому правилу, каждый ватт мощности, рассеваемый на участке печатной платы размером 1 × 2 дюйма, повышает ее температуру на 100 °C. Линейные регуляторы конструируются таким образом, чтобы их перегрев не превышал 40 °C. Безусловно, при ограниченной площади печатной платы предпочтительным будет синхронный понижающий преобразователь, даже, несмотря на увеличенное количество внешних компонентов и сложность расчетов схемы частотной компенсации цепи обратной связи и величины индуктивности.

Тепловые характеристики

Термограмма на Рисунке 4 показывает температурный профиль каждой из трех схем, размещенных на печатной плате. Плата сконструирована таким образом, чтобы ни одна схема не влияла на тепловые характеристики соседней схемы. Из Таблицы 2 видно, что импульсный регулятор работает с наименьшим перегревом, равным 11 °C. Вследствие большой разницы между входными и выходными напряжениями, импульсный регулятор с синхронным выпрямлением по эффективности превосходит любую из линейных схем (Таблица 3). Обратите внимание, перегрев схемы интегрального линейного регулятора отличается от перегрева дискретной линейной схемы. Это связано с тем, что корпус интегрального регулятора (DDPak) крупнее, и рассеиваемое им тепло распределяется по большей площади. Используемые в дискретной линейной схеме корпуса SOT-23 и SOT223 меньше, чем DDPak, что делает отвод тепла более сложным.

Таблица 2. Сводка тепловых характеристик.

Тип
регулятора

Температура
перегрева
(°C)

Максимальная
температура
(°C)

Корпус

Импульсный

Линейный интегральный

Линейный дискретный

Сравнение эффективности

Тепловые характеристики каждого регулятора непосредственно связаны с его КПД. Сравнить КПД трех схем позволяет Рисунок 5. Как и следовало ожидать, импульсный регулятор здесь вне конкуренции - и при легких нагрузках, и при максимальных. При облегченных нагрузках доминируют потери переключения и собственный ток потребления, чем и объясняется снижение КПД при малых выходных токах. При легких нагрузках лучше рассматривать графики потерь мощности (Рисунок 6), чем КПД, поскольку двукратное различие в КПД при токе 10 мА выглядит слишком большим. В то же время, величина тока, потребляемого нагрузкой, очень мала. При входном напряжении 24 В и выходном токе 10 мА потери мощности в импульсном регуляторе составляют 2.8 мВт, а в интегральном линейном - 345 мВт. При максимальной нагрузке измеренные потери мощности равны 0.093 Вт для импульсного регулятора и 2.06 Вт для линейного.

В Таблице 3 собраны результаты измерений КПД и потерь мощности для всех трех схем. Можно заметить, что собственный ток потребления дискретного линейного регулятора меньше, чем у его интегрального аналога. Интегральный линейный регулятор содержит больше расходующих энергию внутренних цепей, но при этом он выполняет больше функций, чем дискретный.

Таблица 3. Эффективность и потери мощности.

Тип
регулятора

С максимальной нагрузкой

Без нагрузки

КПД
(%)

Потеримощности
(Вт)

Собственныйток
потребления
(мА)

Импульсный

Линейный интегральный

Линейный дискретный

Выходные характеристики

Аналоговые схемы могут быть чувствительными к пульсациям питания, а цифровые процессоры - к точности поддержания напряжения питания ядра. Поэтому важно сравнить наши схемы по таким параметрам, как пульсации на выходе, точность стабилизации напряжения и реакция на скачкообразное изменение нагрузки. Линейные регуляторы по самой своей природе отличаются малыми пульсациями, и часто используются для удаления шумов импульсных преобразователей.

Пульсации напряжения обеих схем линейных регуляторов при максимальной нагрузке не превышают 10 мВ. В долях от выходного напряжения это лучше, чем 0.2%. С другой стороны, пульсации импульсного преобразователи достигают 75 мВ, или 1.5% от выходного напряжения. Уменьшить пульсации в схеме импульсного регулятора позволяет низкое эквивалентное последовательное сопротивление выходного керамического конденсатора.

При сравнении точности стабилизации выходных напряжении во всем диапазоне нагрузок выигрывает импульсный регулятор. Из справочных данных на использованные компоненты видно, что источник опорного напряжения (ИОН) импульсного преобразователя характеризуется наилучшей точностью. Импульсные регуляторы являются относительно новыми интегральными схемами, и качество их ИОН постоянно улучшается. Дискретная линейная схема, в которой использован простейший метод стабилизации выходного напряжения, имеет наихудшие характеристики. Однако часто от источника 5 В и не требуется высокой точности, особенно, если это напряжение является входным для регуляторов следующего уровня.

Осциллограммы выходных напряжений и токов в переходных режимах можно увидеть на Рисунках 7-9. Хотя точность поддержания напряжения у импульсного регулятора высока, его переходные характеристики намного хуже, чем у линейных схем. Измеренный от пика до пика отклик импульсного регулятора на скачок тока нагрузки от 50 до 100 мА составляет 250 мВ, или 5% от выходного напряжения, против 40 мВ у линейных схем. Уменьшить выбросы напряжения на нагрузке импульсного регулятора можно с помощью дополнительного выходного конденсатора, однако это приведет к росту цены и размеров. Следует отметить, что дискретная линейная схема не рассчитана на стабилизацию выходного напряжения во время переходных процессов в нагрузке. Кроме того, простота схемы не позволяет реализовать функции ограничения тока или защитного отключения при перегреве.

В Таблице 4 собраны характеристики выходного напряжения для трех схем регуляторов.

Таблица 4. Сводка характеристик выходного напряжения.

Тип
регулятора

Максимальные
пульсации
выходного
напряжения
(мВ)

Выброс на выходе
при скачке тока нагрузки
от 50 до 100 мА
(мВ)

Погрешность регулирования
при скачке тока нагрузки
от 0 до 100 мА
(мВ)

Импульсный

Линейный интегральный

Линейный дискретный

Сравнение стоимости

Большинство используемых в схемах внешних компонентов - это пассивные резисторы и конденсаторы, стоящие намного меньше $0.01. Самыми дорогими во всех трех схемах являются кремниевые приборы. Приведенные в Таблице 5 данные по стоимости комплектующих для всех вариантов схемы собраны в США по каналам дистрибуции на основе розничных цен, рекомендованных для партий из 10,000 компонентов. Как видим, оба линейных регулятора намного дешевле импульсного. К сожалению, для импульсного регулятора необходима внешняя индуктивность, которая может стоить порядка $0.10, однако дополнительные расходы могут быть оправданы улучшением КПД и габаритных характеристик. Разница в ценах линейных схем составляет всего лишь $0.06! При выборе между интегральным и дискретным линейным регулятором первый может оказаться предпочтительнее вследствие наличия встроенных цепей защиты.

Заключение

В распоряжении разработчиков источников питания имеется большой выбор технических решений. Какое будет лучшим - зависит от требований, предъявляемых к конкретному приложению. Системы управления питанием, потребляющие меньше энергии и занимающие меньше места на плате, позволяют разработчикам сделать их продукты более индивидуальными и привлекательными для рынка. Синхронные понижающие преобразователи радикально отличаются от линейных регуляторов эффективностью и компактностью. Если на первое место выдвигается цена решения, возможно, будет целесообразным использование дискретного линейного регулятора, однако платой за это станут более плохие характеристики, отсутствие защитных функций и, вполне вероятно, дополнительные затраты на теплоотвод.

Линейный дискретный

Полный набор характеристик всех трех регуляторов, необходимых разработчику для выбора варианта, наилучшим образом отвечающего требованиям создаваемого им приложения, приведен в Таблице 6.

Создание материнских плат с увеличенным количеством фаз питания процессора постепенно становится своеобразным соревнованием между производителями материнских плат. К примеру, совсем недавно компания Gigabyte производила платы с 12-фазными источниками питания процессоров, но в ныне выпускаемых ею платах количество фаз выросло до 24. Но так ли уж необходимо использовать столь большое количество фаз питания и почему одни производители их постоянно увеличивают, пытаясь при этом аргументированно доказать, что чем больше, тем лучше, а другие довольствуются небольшим количеством фаз питания? Может быть, большое количество фаз питания процессора - это не более чем маркетинговый трюк, призванный привлечь внимание потребителей к своей продукции? В этой статье мы постараемся мотивированно ответить на этот вопрос, а также в деталях рассмотрим принципы работы многофазных импульсных источников питания процессоров и других элементов материнских плат (чипсетов, памяти и т.д.).

Немного истории

Как известно, питание всех компонентов материнских плат (процессора, чипсета, модулей памяти и т.д.) осуществляется от блока питания, который подключается к специальному разъему на материнской плате. Напомним, что на любой современной материнской плате имеется 24-контактный ATX-разъем питания, а также дополнительный 4- (ATX12V) или 8-контактный (EPS12V) разъем питания.

Все блоки питания генерируют постоянное напряжение номиналом ±12, ±5 и +3,3 В, однако понятно, что различные микросхемы материнских плат требуют постоянного напряжения иных номиналов (причем разные микросхемы требуют различного напряжения питания), а потому возникает задача преобразования и стабилизации постоянного напряжения, получаемого от источника питания, в постоянное напряжение, требуемое для питания определенной микросхемы материнской платы (преобразование DC-DC). Для этого в материнских платах используются соответствующие конверторы (преобразователи) напряжения, которые понижают номинальное напряжение источника питания до необходимого значения.

Существует два типа конверторов постоянного напряжения DC-DC: линейный (аналоговый) и импульсный. Линейные конверторы напряжения на материнских платах сегодня уже не встречаются. В этих конверторах понижение напряжения производится за счет падения части напряжения на резистивных элементах и рассеивания части потребляемой мощности в виде тепла. Такие конверторы снабжались мощными радиаторами и сильно грелись. Однако с ростом мощности (а соответственно, и токов), потребляемой компонентами материнских плат, от линейных преобразователей напряжения были вынуждены отказаться, поскольку возникала проблема их охлаждения. Во всех современных материнских платах используются импульсные преобразователи постоянного напряжения, которые нагреваются гораздо меньше по сравнению с линейными.

Понижающий импульсный преобразователь постоянного напряжения для питания процессора часто называют модулем VRM (Voltage Regulation Module - модуль регулирования напряжения) или VRD (Voltage Regulator Down - модуль понижения напряжения). Разница между VRM и VRD заключается в том, что модуль VRD расположен непосредственно на материнской плате, а VRM представляет собой внешний модуль, устанавливаемый в специальный слот на материнской плате. В настоящее время внешние VRM-модули практически не встречаются и все производители применяют VRD-модули. Однако само название VRM так прижилось, что стало общеупотребительным и теперь его используют даже для обозначения VRD-модулей.

Импульсные регуляторы напряжения питания, применяемые для чипсета, памяти и других микросхем материнских плат, не имеют своего специфического названия, однако по принципу действия они ничем не отличаются от VRD. Разница заключается лишь в количестве фаз питания и выходном напряжении.

Как известно, любой преобразователь напряжения характеризуется входным и выходным напряжением питания. Что касается выходного напряжения питания, то оно определяется конкретной микросхемой, для которой используется регулятор напряжения. А вот входное напряжение может быть либо 5, либо 12 В.

Ранее (во времена процессоров Intel Pentium III) для импульсных регуляторов напряжения питания применялось входное напряжение 5 В, однако впоследствии производители материнских плат стали все чаще использовать входное напряжение 12 В, и в настоящее время на всех платах в качестве входного напряжения импульсных регуляторов напряжения применяется напряжение питания 12 В.

Принцип действия однофазного импульсного регулятора напряжения питания

Прежде чем переходить к рассмотрению многофазных импульсных регуляторов напряжения питания, рассмотрим принцип действия простейшего однофазного импульсного регулятора напряжения.

Компоненты импульсного регулятора напряжения питания

Импульсный понижающий преобразователь напряжения питания содержит в своей основе PWM-контроллер (ШИМ-контроллер) - электронный ключ, который управляется PWM-контроллером и периодически подключает и отключает нагрузку к линии входного напряжения, а также индуктивно-емкостной LC-фильтр для сглаживания пульсаций выходного напряжения. PWM - это аббревиатура от Pulse Wide Modulation (широтно-импульсная модуляция, ШИМ). Принцип действия импульсного понижающего преобразователя напряжения следующий. PWM-контроллер создает последовательность управляющих импульсов напряжения. PWM-сигнал представляет собой последовательность прямоугольных импульсов напряжения, которые характеризуются амплитудой, частотой и скважностью (рис. 1).

Рис. 1. PWM-сигнал и его основные характеристики

Скважностью PWM-сигнала называют отношение промежутка времени, в течение которого сигнал имеет высокий уровень, к периоду PWM-сигнала: = /T .

Сигнал, формируемый PWM-контроллером, используется для управления электронным ключом, который периодически, с частотой PWM-сигнала, подключает и отключает нагрузку к линии питания 12 В. Амплитуда PWM-сигнала должна быть такой, чтобы с его помощью можно было управлять электронным ключом.

Соответственно на выходе электронного ключа наблюдается последовательность прямоугольных импульсов с амплитудой 12 В и частотой следования, равной частоте PWM-импульсов. Из курса математики известно, что любой периодический сигнал может быть представлен в виде гармонического ряда (ряда Фурье). В частности, периодическая последовательность прямоугольных импульсов одинаковой длительности при представлении в виде ряда будет иметь постоянную составляющую, обратно пропорциональную скважности импульсов, то есть прямо пропорциональную их длительности. Пропустив полученные импульсы через фильтр низких частот (ФНЧ) с частотой среза, значительно меньшей, чем частота следования импульсов, эту постоянную составляющую можно легко выделить, получив стабильное постоянное напряжение. Поэтому импульсные преобразователи напряжения содержат также низкочастотный фильтр, сглаживающий (выпрямляющий) последовательность прямоугольных импульсов напряжения. Структурная блок-схема такого импульсного понижающего преобразователя напряжения показана на рис. 2.

Рис. 2. Структурная блок-схема такого импульсного понижающего
преобразователя напряжения

Ну а теперь рассмотрим элементы импульсного понижающего преобразователя напряжения питания более подробно.

Электронный ключ и управляющий драйвер

В качестве электронного ключа импульсных преобразователей напряжения питания компонентов материнских плат всегда используется пара полевых n-канальных МОП-транзисторов (MOSFET-транзисторы), соединенных таким образом, что сток одного транзистора подключен к линии питания 12 В, исток этого транзистора соединен с точкой выхода и стоком другого транзистора, а исток второго транзистора заземлен. Транзисторы этого электронного ключа (иногда он называется силовой ключ) работают таким образом, что один из транзисторов всегда находится в открытом состоянии, а другой - в закрытом.

Для управления переключениями MOSFET-транзисторов управляющие сигналы подаются на затворы этих транзисторов. Управляющий сигнал PWM-контроллера используется для того, чтобы переключать MOSFET-транзисторы, однако этот сигнал подается не непосредственно на затворы транзисторов, а через специальную микросхему, называемую драйвером MOSFET-транзисторов или драйвером фазы питания. Данный драйвер управляет переключением MOSFET-транзисторов на частоте, задаваемой PWM-контроллером, подавая требуемые напряжения переключения на затворы транзисторов.

Когда транзистор, подключенный к линии питания 12 В, открыт, второй транзистор, соединенный через свой сток с истоком первого транзистора, закрыт. В этом случае линия питания 12 В оказывается подключенной к нагрузке через сглаживающий фильтр. Когда транзистор, подключенный к линии питания 12 В, закрыт, второй транзистор открыт и линия питания 12 В оказывается отключенной от нагрузки, но нагрузка в этот момент соединена через сглаживающий фильтр с землей.

Низкочастотный LC-фильтр

Сглаживающий, или низкочастотный, фильтр представляет собой LC-фильтр, то есть индуктивность, включенную последовательно с нагрузкой, и емкость, включенную параллельно нагрузке (рис. 3).

Рис. 3. Схема однофазного импульсного преобразователя напряжения

Как известно из курса физики, если на вход такого LC-фильтра подать гармонический сигнал определенной частоты U вх (f) , то напряжение на выходе фильтра U вых (f) зависит от реактивных сопротивлений индуктивности (Z L = j2 fC) и конденсатора Z c = 1/(j2 fC) . Коэффициент передачи такого фильтра K(f) = (U вых (f))/(U вх (f)) можно рассчитать, рассматривая делитель напряжения, образованный частотно-зависимыми сопротивлениями. Для ненагруженного фильтра получим:

K(f) = Z c /(Z c + Z L) = 1/(1 – (2 f) 2 LC)

Или, если ввести обозначение f0 = 2 /, то получим:

K(f) = 1/(1 – (f/f0) 2)

Из данной формулы видно, что коэффициент передачи ненагруженного идеального LC-фильтра неограниченно растет с приближением к частоте f0 , а затем, при f>f 0 , убывает пропорционально 1/f 2 . На низких частотах (f коэффициент передачи близок к единице, а на высоких (f>f 0) - к нулю. Поэтому частоту f 0 называют частотой среза фильтра.

Как уже отмечалось, сглаживание импульсов напряжения с помощью LC-фильтра необходимо, чтобы частота среза фильтра f 0 = 2 / была значительно меньшей, чем частота следования импульсов напряжения. Данное условие позволяет подобрать необходимые емкость и индуктивность фильтра. Впрочем, отвлечемся от формул и попытаемся объяснить принцип действия фильтра на более простом языке.

В тот момент, когда силовой ключ открыт (транзистор Т 1 открыт, транзистор Т 2 закрыт), энергия от входного источника передается в нагрузку через индуктивность L , в котором при этом накапливается энергия. Ток, протекающий при этом по цепи, изменяется не мгновенно, а постепенно, поскольку возникающая в индуктивности ЭДС препятствует изменению тока. Одновременно с этим заряжается и конденсатор, установленный параллельно нагрузке.

После того как силовой ключ закрывается (транзистор Т 1 закрыт, транзистор Т 2 открыт), ток от линии входного напряжения не поступает в индуктивность, но по законам физики возникающая ЭДС индукции поддерживает прежнее направление тока. То есть в этот период ток в нагрузку поступает от индуктивного элемента. Для того чтобы цепь замкнулась и ток пошел на сглаживающий конденсатор и в нагрузку, открывается транзистор T 2 , обеспечивая замкнутую цепь и протекание тока по пути индуктивность - емкость и нагрузка - транзистор T 2 - индуктивность.

Как уже отмечалось, с помощью такого сглаживающего фильтра можно получить напряжение на нагрузке, пропорциональное скважности управляющих PWM-импульсов. Однако понятно, что при таком способе сглаживания выходное напряжение будет иметь пульсации напряжения питания относительного некоторого среднего значения (выходного напряжения) - рис. 4. Величина пульсаций напряжения на выходе зависит от частоты переключения транзисторов, значения емкости и индуктивности.

Рис. 4. Пульсации напряжения после сглаживания LC-фильтром

Стабилизация выходного напряжения и функции PWM-контроллера

Как уже отмечалось, выходное напряжение зависит (при заданной нагрузке, частоте, индуктивности и емкости) от скважности PWM-импульсов. Поскольку ток через нагрузку динамически изменяется, возникает задача стабилизации выходного напряжения. Делается это следующим образом. PWM-контроллер, формирующий сигналы переключения транзисторов, связан с нагрузкой петлей обратной связи и постоянно отслеживает выходное напряжение на нагрузке. Внутри PWM-контроллера генерируется референсное напряжение питания, которое должно быть на нагрузке. PWM-контроллер постоянно сравнивает выходное напряжение с референсным, и если возникает рассогласование U , то данный сигнал рассогласования используется для изменения (корректировки) скважности PWM-импульсов, то есть изменение скважности импульсов ~ U . Таким образом реализуется стабилизация выходного напряжения.

Естественно, возникает вопрос: каким образом PWM-контроллер узнает о требуемом напряжении питания? К примеру, если говорить о процессорах, то, как известно, напряжение питания разных моделей процессора может быть различным. Кроме того, даже для одного и того же процессора напряжение питания может динамически изменяться в зависимости от его текущей загрузки.

О требуемом номинальном напряжении питания PWM-контроллер узнает по сигналу VID (Voltage Identifier). Для современных процессоров Intel Core i7, поддерживающих спецификацию питания VR 11.1, сигнал VID является 8-битным, а для устаревших процессоров, совместимых со спецификацией VR 10.0, сигнал VID был 6-битным. 8-битный сигнал VID (комбинация 0 и 1) позволяет задать 256 различных уровней напряжения процессора.

Ограничения однофазного импульсного регулятора напряжения питания

Рассмотренная нами однофазная схема импульсного регулятора напряжения питания проста в исполнении, однако имеет ряд ограничений и недостатков.

Если говорить об ограничении однофазного импульсного регулятора напряжения питания, то оно заключается в том, что и MOSFET-транзисторы, и индуктивности (дроссели), и емкости имеют ограничение по максимальном току, который через них можно пропускать. К примеру, для большинства MOSFET-транзисторов, которые используются в регуляторах напряжения материнских плат, ограничение по току составляет 30 A. В то же время сами процессоры при напряжении питания порядка 1 В и энергопотреблении свыше 100 Вт потребляют ток свыше 100 A. Понятно, что если при такой силе тока использовать однофазный регулятор напряжения питания, то его элементы просто «сгорят».

Если говорить о недостатке однофазного импульсного регулятора напряжения питания, то он заключается в том, что выходное напряжение питания имеет пульсации, что крайне нежелательно.

Для того чтобы преодолеть ограничения по току импульсных регуляторов напряжения, а также минимизировать пульсации выходного напряжения, используются многофазные импульсные регуляторы напряжения.

Многофазные импульсные регуляторы напряжения

В многофазных импульсных регуляторах напряжения каждая фаза образована драйвером управления переключениями MOSFET-транзисторов, парой самих MOSFET-транзисторов и сглаживающим LC-фильтром. При этом используется один многоканальный PWM-контроллер, к которому параллельно подключается несколько фаз питания (рис. 5).

Рис. 5. Структурная схема многофазного импульсного регулятора напряжения питания

Применение N-фазного регулятора напряжения питания позволяет распределить ток по всем фазам, а следовательно, ток, протекающий по каждой фазе, будет в N раз меньше тока нагрузки (в частности, процессора). К примеру, если использовать 4-фазный регулятор напряжения питания процессора с ограничением по току в каждой фазе 30 A, то максимальный ток через процессор составит 120 A, чего вполне достаточно для большинства современных процессоров. Однако если используются процессоры с TDP 130 Вт или предполагается возможность разгона процессора, то желательно применять не 4-фазный, а 6-фазный импульсный регулятор напряжения питания процессора или же использовать в каждой фазе питания дроссели, конденсаторы и MOSFET-транзисторы, рассчитанные на больший ток.

Для уменьшения пульсации выходного напряжения в многофазных регуляторах напряжения все фазы работают синхронно с временны м сдвигом друг относительно друга. Если T - это период переключения MOSFET-транзисторов (период PWM-сигнала) и используется N фаз, то временной сдвиг по каждой фазе составит T/N (рис. 6). За синхронизацию PWM-сигналов по каждой фазе с временным сдвигом отвечает PWM-контроллер.

Рис. 6. Временные сдвиги PWM-сигналов в многофазном регуляторе напряжения

В результате того, что все фазы работают с временны м сдвигом друг относительно друга, пульсации выходного напряжения и тока по каждой фазе также будут сдвинуты по временной оси друг относительно друга. Суммарный ток, проходящий по нагрузке, будет складываться из токов по каждой фазе, и пульсации результирующего тока окажутся меньше, чем пульсации тока по каждой фазе (рис. 7).

Рис. 7. Ток по каждой фазе
и результирующий ток нагрузки
в трехфазном регуляторе напряжения

Итак, основное преимущество многофазных импульсных регуляторов напряжения питания заключается в том, что они позволяют, во-первых, преодолеть ограничение по току, а во-вторых, снизить пульсации выходного напряжения при той же емкости и индуктивности сглаживающего фильтра.

Дискретные многофазные схемы регуляторов напряжения и технология DrMOS

Как мы уже отмечали, каждая фаза питания образована управляющим драйвером, двумя MOSFET-транзисторами, дросселем и конденсатором. При этом один PWM-контроллер одновременно управляет несколькими фазами питания. Конструктивно на материнских платах все компоненты фазы могут быть дискретными, то есть имеется отдельная микросхема драйвера, два отдельных MOSFET-транзистора, отдельный дроссель и емкость. Такой дискретный подход используется большинством производителей материнских плат (ASUS, Gigabyte, ECS, AsRock и т.д.). Однако есть и несколько иной подход, когда вместо применения отдельной микросхемы драйвера и двух MOSFET-транзисторов используется одна микросхема, объединяющая и силовые транзисторы, и драйвер. Данная технология была разработана компанией Intel и получила название DrMOS, которое буквально означает Driver + MOSFETs. Естественно, что при этом также применяются отдельные дроссели и конденсаторы, а для управления всеми фазами служит многоканальный PWM-контроллер.

В настоящее время технология DrMOS используется только на материнских платах MSI. Говорить о преимуществах технологии DrMOS в сравнении с традиционным дискретным способом организации фаз питания довольно сложно. Здесь, скорее, все зависит от конкретной DrMOS-микросхемы и ее характеристик. К примеру, если говорить о новых платах MSI для процессоров семейства Intel Core i7, то в них применяется DrMOS-микросхема Renesas R2J20602 (рис. 8). Например, на плате MSI Eclipse Plus используется 6-фазный регулятор напряжения питания процессора (рис. 9) на базе 6-канального PWM-контроллера Intersil ISL6336A (рис. 10) и DrMOS-микросхем Renesas R2J20602.

Рис. 8. DrMOS-микросхема Renesas R2J20602

Рис. 9. Шестифазный регулятор напряжения питания процессора
на базе 6-канального PWM-контроллера Intersil ISL6336A
и DrMOS-микросхем Renesas R2J20602 на плате MSI Eclipse Plus

Рис. 10. Шестиканальный PWM-контроллер
Intersil ISL6336A

DrMOS-микросхема Renesas R2J20602 поддерживает частоту переключения MOSFET-транзисторов до 2 МГц и отличается очень высоким КПД. При входном напряжении 12 В, выходном 1,3 В и частоте переключения 1 МГц ее КПД составляет 89%. Ограничение по току - 40 А. Понятно, что при шестифазной схеме питания процессора обеспечивается как минимум двукратный запас по току для DrMOS-микросхемы. При реальном значении тока в 25 А энергопотребление (выделяющееся в виде тепла) самой микросхемы DrMOS составляет всего 4,4 Вт. Также становится очевидным, что при использовании DrMOS-микросхем Renesas R2J20602 нет необходимости применять более шести фаз в регуляторах напряжения питания процессора.

Компания Intel в своей материнской плате Intel DX58S0 на базе чипсета Intel X58 для процессоров Intel Core i7 также использует 6-фазный, но дискретный регулятор напряжения питания процессора. Для управления фазами питания применяется 6-канальный PWM-контроллер ADP4000 от компании On Semiconductor, а в качестве MOSFET-драйверов - микросхемы ADP3121 (рис. 11). PWM-контроллер ADP4000 поддерживает интерфейс PMBus (Power Manager Bus) и возможность программирования на работу в режиме 1, 2, 3, 4, 5 и 6 фаз с возможностью переключения числа фаз в режиме реального времени. Кроме того, с помощью интерфейса PMBus можно считывать текущие значения тока процессора, его напряжения и потребляемой мощности. Остается лишь сожалеть, что компания Intel не реализовала эти возможности чипа ADP4000 в утилите мониторинга состояния процессора.

Рис. 11. Шестифазный регулятор напряжения питания процессора
на базе PWM-контроллера ADP4000 и MOSFET-драйверов ADP3121
на плате Intel DX58S0 (показаны две фазы питания)

Отметим также, что в каждой фазе питания применяются силовые MOSFET-транзисторы NTMFS4834N компании On Semiconductor с ограничением по току в 130 A. Нетрудно догадаться, что при таких ограничениях по току сами по себе силовые транзисторы не являются узким местом фазы питания. В данном случае ограничение по току на фазу питания налагает дроссель. В рассматриваемой схеме регулятора напряжения используются дроссели PA2080.161NL компании PULSE с ограничением по току 40 A, но понятно, что даже при таком ограничении по току вполне достаточно шести фаз питания процессора и имеется большой запас для экстремального разгона процессора.

Технология динамического переключения фаз

Практически все производители материнских плат в настоящее время используют технологию динамического переключения числа фаз питания процессора (речь идет о платах для процессоров Intel). Собственно, данная технология отнюдь не нова и была разработана компанией Intel уже достаточно давно. Однако, как это часто бывает, появившись, данная технология оказалась невостребованной рынком и долгое время лежала в «запасниках». И только когда идея снижения энергопотребления компьютеров овладела умами разработчиков, вспомнили о динамическом переключении фаз питания процессора. Производители материнских плат пытаются выдать эту технологию за свою фирменную и придумывают ей различные названия. К примеру, у компании Gigabyte она называется Advanced Energy Saver (AES), у ASRock - Intelligent Energy Saver (IES), у ASUS - EPU, у MSI - Active Phase Switching (APS). Однако, несмотря на разнообразие названий, все эти технологии реализованы абсолютно одинаково и, конечно же, не являются фирменными. Более того, возможность переключения фаз питания процессора заложена в спецификацию Intel VR 11.1 и все PWM-контроллеры, совместимые со спецификацией VR 11.1, поддерживают ее. Собственно, у производителей материнских плат выбор здесь небольшой. Это либо PWM-контроллеры компании Intersil (например, 6-канальный PWM-контроллер Intersil ISL6336A), либо PWM-контроллеры компании On Semiconductor (например, 6-канальный PWM-контроллер ADP4000). Контроллеры других компаний применяются реже. Контроллеры и Intersil, и On Semiconductor, совместимые со спецификацией VR 11.1, поддерживают динамическое переключение фаз питания. Вопрос лишь в том, как производитель материнской платы использует возможности PWM-контроллера.

Естественно, возникает вопрос: почему технологию динамического переключения фаз питания называют энергосберегающей и какова эффективность ее применения?

Рассмотрим, к примеру, материнскую плату с 6-фазным регулятором напряжения питания процессора. Если процессор загружен несильно, а значит, потребляемый им ток невелик, вполне можно обойтись двумя фазами питания, а потребность в шести фазах возникает при сильной загрузке процессора, когда потребляемый им ток достигает максимального значения. Действительно, можно сделать так, чтобы количество задействованных фаз питания соответствовало потребляемому процессором току, то есть чтобы фазы питания динамически переключались в зависимости от загрузки процессора. Но не проще ли использовать все шесть фаз питания при любом токе процессора? Чтобы ответить на этот вопрос, нужно учесть, что любой регулятор напряжения сам потребляет часть преобразуемой им электроэнергии, которая выделяется в виде тепла. Поэтому одной из характеристик преобразователя напряжения является его КПД, или энергоэффективность, то есть отношение передаваемой мощности в нагрузку (в процессор) к потребляемой регулятором мощности, которая складывается из мощности, потребляемой нагрузкой, и мощности, потребляемой самим регулятором. Энергоэффективность регулятора напряжения зависит от текущего значения тока процессора (его загрузки) и количества задействованных фаз питания (рис. 12).

Рис. 12. Зависимость энергоэффективности (КПД) регулятора напряжения
от тока процессора при различном количестве фаз питания

Зависимость энергоэффективности регулятора напряжения от тока процессора при неизменном количестве фаз питания выглядит следующим образом. Первоначально, с ростом тока нагрузки (процессора), КПД регулятора напряжения линейно возрастает. Далее достигается максимальное значение КПД, а при дальнейшем увеличении тока нагрузки КПД постепенно уменьшается. Главное, что значение тока нагрузки, при котором достигается максимальное значение КПД, зависит от количества фаз питания, а следовательно, если использовать технологию динамического переключения фаз питания, то КПД регулятора напряжения питания всегда можно поддерживать на максимально высоком уровне.

Сравнивая зависимости энергоэффективности регулятора напряжения от тока процессора для различного количества фаз питания, можно сделать вывод: при малом токе процессора (при незначительной загрузке процессора) более эффективно задействовать меньшее количество фаз питания. В этом случае меньше энергии будет потребляться самим регулятором напряжения и выделяться в виде тепла. При высоких значениях тока процессора использование малого количества фаз питания приводит к снижению энергоэффективности регулятора напряжения. Поэтому в данном случае оптимально применять большее количество фаз питания.

С теоретической точки зрения использование технологии динамического переключения фаз питания процессора должно, во-первых, снизить общее энергопотребление системы, а во-вторых - тепловыделение на самом регуляторе напряжения питания. Причем, по заявлениям производителей материнских плат, данная технология позволяет снизить энергопотребление системы на целых 30%. Конечно же, 30% - это число, взятое с потолка. Реально технология динамического переключения фаз питания позволяет снизить суммарное энергопотребление системы не более чем на 3-5%. Дело в том, что данная технология позволяет экономить электроэнергию, потребляемую лишь самим регулятором напряжения питания. Однако основными потребителями электроэнергии в компьютере являются процессор, видеокарта, чипсет и память, и на фоне суммарного энергопотребления этих компонентов энергопотребление самого регулятора напряжения достаточно мало. А потому, как ни оптимизируй энергопотребление регулятора напряжения, добиться существенной экономии просто невозможно.

Маркетинговые «фишки» производителей

На что только не идут производители материнских плат, дабы привлечь к своей продукции внимание покупателей и мотивированно доказать, что она лучше, чем у конкурентов! Одна из таких маркетинговых «фишек» - увеличение фаз питания регулятора напряжения питания процессора. Если раньше на топовых материнских платах применялись шестифазные регуляторы напряжения, то сейчас используют 10, 12, 16, 18 и даже 24 фазы. Действительно ли нужно так много фаз питания, или это не более чем маркетинговый трюк?

Конечно, многофазные регуляторы напряжения питания имеют свои неоспоримые преимущества, но всему есть разумный предел. К примеру, как мы уже отмечали, большое количество фаз питания позволяет использовать в каждой фазе питания компоненты (MOSFET-транзисторы, дроссели и емкости), рассчитанные на низкий ток, которые, естественно, дешевле компонентов с высоким ограничением по току. Однако сейчас все производители материнских плат применяют твердотельные полимерные конденсаторы и дроссели с ферритовым сердечником, которые имеют ограничение по току не менее 40 A. MOSFET-транзисторы также имеют ограничение по току не ниже 40 A (а в последнее время наблюдается тенденция перехода на MOSFET-транзисторы с ограничением по току в 75 А). Понятно, что при таких ограничениях по току на каждой фазе волне достаточно применять шесть фаз питания. Такой регулятор напряжения теоретически способен обеспечить ток процессора более 200 А, а следовательно, энергопотребление более 200 Вт. Понятно, что даже в режиме экстремального разгона достичь таких значений тока и энергопотребления практически невозможно. Так зачем же производители делают регуляторы напряжения с 12 фазами и более, если питание процессора в любом режиме его работы способен обеспечить и шестифазный регулятор напряжения?

Если сравнивать 6- и 12-фазный регуляторы напряжения, то теоретически при использовании технологии динамического переключения фаз питания энергоэффективность 12-фазного регулятора напряжения будет выше. Однако разница в энергоэффективности будет наблюдаться только при высоких токах процессора, которые на практике недостижимы. Но даже если и удается достичь столь высокого значения тока, при котором будет различаться энергоэффективность 6- и 12-фазного регуляторов напряжения, то эта разница будет столь мала, что ее можно не принимать в расчет. Поэтому для всех современных процессоров с энергопотреблением 130 Вт даже в режиме их экстремального разгона волне достаточно 6-фазного регулятора напряжения. Применение 12-фазного регулятора напряжения не дает никаких преимуществ даже при использовании технологии динамического переключения фаз питания. Зачем же производители начали делать 24-фазные регуляторы напряжения - остается только гадать. Здравого смысла в этом нет, видимо, они рассчитывают произвести впечатление на технически неграмотных пользователей, для которых «чем больше, тем лучше».

Кстати, нелишне будет отметить, что сегодня не производится 12- и тем более 24-канальных PWM-контроллеров, управляющих фазами питания. Максимальное количество каналов в PWM-контроллерах равно шести. Следовательно, когда применяются регуляторы напряжения с количеством фаз более шести, производители вынуждены устанавливать несколько PWM-контроллеров, которые работают синхронно. Напомним, что управляющий PWM-сигнал в каждом канале имеет определенную задержку относительно PWM-сигнала в другом канале, но эти временные смещения сигналов реализуются в пределах одного контроллера. Получается, что при применении, к примеру, двух 6-канальных PWM-контроллеров для организации 12-фазного регулятора напряжения фазы питания, управляемые одним контроллером, попарно объединены с фазами питания, управляемыми другим контроллером. То есть первая фаза питания первого контроллера будет работать синхронно (без временного сдвига) с первой фазой питания второго контроллера. Динамически переключаться фазы будут, скорее всего, тоже попарно. В общем, получается не «честный» 12-фазный регулятор напряжения, а скорее гибридная версия 6-фазного регулятора с двумя каналами в каждой фазе.

Линейные стабилизаторы имеют общий недостаток – это малый КПД и высокое выделение тепла. Мощные приборы, создающие нагрузочный ток в широких пределах имеют значительные габариты и вес. Чтобы компенсировать эти недостатки, разработаны и используются импульсные стабилизаторы.

Устройство, поддерживающее в постоянном виде напряжение на потребителе тока с помощью регулировки электронным элементом, действующим в режиме ключа. Импульсный стабилизатор напряжения, так же как и линейный существует последовательного и параллельного вида. Роль ключа в таких моделях исполняют транзисторы.

Так как действующая точка стабилизирующего устройства практически постоянно расположена в области отсечки или насыщения, проходя активную область, то в транзисторе выделяется немного тепла, следовательно, импульсный стабилизатор имеет высокий КПД.

Стабилизация осуществляется с помощью изменения продолжительности импульсов, а также управления их частотой. Вследствие этого различают частотно-импульсное, а другими словами широтное регулирование. Импульсные стабилизаторы функционируют в комбинированном импульсном режиме.

В устройствах стабилизации с регулированием широтно-импульсным частота импульсов имеет постоянную величину, а продолжительность действия импульсов является непостоянным значением. В приборах с регулированием частотно-импульсным продолжительность импульсов не изменяется, меняют только частоту.

На выходе устройства напряжение представлено в виде пульсаций, соответственно оно не годится для питания потребителя. Перед подачей питания на нагрузку потребителя, его нужно выровнять. Для этого на выходе импульсных стабилизаторов монтируют выравнивающие емкостные фильтры. Они бывают многозвенчатыми, Г-образными и другими.

Средняя величина напряжения, поданная на нагрузку, вычисляется по формуле:

  • Ти – продолжительность периода.
  • tи – продолжительность импульса.
  • Rн – значение сопротивления потребителя, Ом.
  • I(t) – значение тока, проходящего по нагрузке, ампер.

Ток может перестать протекать по фильтру к началу следующего импульса, в зависимости от индуктивности. В этом случае идет речь о режиме действия с переменным током. Ток также может дальше протекать, тогда имеют ввиду функционирование с постоянным током.

При повышенной чувствительности нагрузки к импульсам питания, выполняют режим постоянного тока, не смотря со значительными потерями в обмотке дросселя и проводах. Если размер импульсов на выходе прибора незначителен, то рекомендуется функционирование при переменном токе.

Принцип работы

В общем виде импульсный стабилизатор включает в себя импульсный преобразователь с устройством регулировки, генератор, выравнивающий фильтр, снижающий импульсы напряжения на выходе, сравнивающее устройство, подающее сигнал разности входного и выходного напряжения.

Схема основных частей стабилизатора напряжения показана на рисунке.

Напряжение на выходе прибора поступает на сравнивающее устройство с базовым напряжением. В результате получают пропорциональный сигнал. Его подают на генератор, предварительно усилив его.

При регулировании в генераторе разностный аналоговый сигнал модифицируют в пульсации с постоянной частотой и переменной продолжительностью. При регулировании частотно-импульсном продолжительность импульсов имеет постоянное значение. Она меняет частоту импульсов генератора в зависимости от свойств сигнала.

Образованные генератором управляющие импульсы проходят на элементы преобразователя. Транзистор регулировки действует в режиме ключа. Изменяя частоту или интервал импульсов генератора, есть возможность менять нагрузочное напряжение. Преобразователь модифицирует значение напряжения на выходе в зависимости от свойств управляющих импульсов. По теории в приборах с частотной и широтной регулировкой импульсы напряжения на потребителе могут отсутствовать.

При релейном принципе действия сигнал, который управляется стабилизатором, образуется с помощью триггера. При поступлении постоянного напряжения в прибор транзистор, работающий в качестве ключа, открыт, и повышает напряжение на выходе. сравнивающее устройство определяет сигнал разности, который достигнув некоторого верхнего предела, поменяет состояние триггера, и произойдет коммутация регулирующего транзистора на отсечку.

Напряжение на выходе станет уменьшаться. При падении напряжения до нижнего предела сравнивающее устройство определяет сигнал разности, переключающий снова триггер, и транзистор опять войдет в насыщение. Разность потенциалов на нагрузке прибора станет повышаться. Следовательно, при релейном виде стабилизации напряжение на выходе повышается, тем самым выравнивается. Предел срабатывания триггера настраивают с помощью корректировки амплитуды значения напряжения на сравнивающем устройстве.

Стабилизаторы релейного типа имеют повышенную скорость реакции, в отличие от приборов с частотным и широтным регулированием. Это является их преимуществом. В теории при релейном виде стабилизации на выходе прибора всегда будут импульсы. Это является их недостатком.

Повышающий стабилизатор

Импульсные повышающие стабилизаторы применяют вместе с нагрузками, разность потенциалов которых выше, чем напряжение на входе приборов. В стабилизаторе нет гальванической изоляции сети питания и нагрузки. Импортные повышающие стабилизаторы называются boost converter. Основные части такого прибора:

Транзистор вступает в насыщение, и ток проходит по цепи от положительного полюса по накопительному дросселю, транзистору. При этом накапливается энергия в магнитном поле дросселя. Нагрузочный ток может создать только разряд емкости С1.

Отключим выключающее напряжение с транзистора. При этом он вступит в положение отсечки, а следовательно на дросселе появится ЭДС самоиндукции. Оно будет коммутировано последовательно с напряжением входа, и подключено по диоду к потребителю. Ток пойдет по цепи от положительного полюса к дросселю, по диоду и нагрузке.

В этот момент магнитное поле индуктивного дросселя выдает энергию, а емкость С1 резервирует энергию для поддержки напряжения на потребителе после вхождения транзистора в режим насыщения. Дроссель является для резерва энергии и не работает в фильтре питания. При повторной подаче напряжения на транзистор, он откроется, и весь процесс пойдет заново.

Стабилизаторы с триггером Шмитта

Такой вид импульсного устройства имеет свои особенности наименьшим набором компонентов. Основную роль в конструкции играет триггер. В его состав входит компаратор. Основной задачей компаратора является сравнивание величины выходной разности потенциалов с наибольшим допустимым.

Принцип действия аппарата с триггером Шмитта состоит в том, что при увеличении наибольшего напряжения осуществляется коммутация триггера в позицию ноля с размыканием электронного ключа. В одно время разряжается дроссель. Когда напряжение доходит до наименьшего значения, то выполняется коммутация на единицу. Это обеспечивает замыкание ключа и прохождение тока на интергратор.

Такие приборы имеют отличия своей упрощенной схемой, но использовать их можно в особых случаях, так как импульсные стабилизаторы бывают только повышающими и понижающими.

Понижающий стабилизатор

Стабилизаторы импульсного типа, функционирующие с понижением напряжения, являются компактными и мощными приборами питания электрическим током. При этом они имеют низкую чувствительность к наводкам потребителя постоянным напряжением одного значения. Гальваническая изоляция выхода и входа в понижающих устройствах отсутствует. Импортные приборы получили название chopper. Выходное питание в таких устройствах постоянно находится меньше входного напряжения. Схема импульсного стабилизатора понижающего типа изображена на рисунке.

Подключим напряжение для управления истоком и затвором транзистора, который войдет в положение насыщения. По нему будет проходить ток по цепи от положительного полюса по выравнивающему дросселю и нагрузке. В прямом направлении ток по диоду не протекает.

Отключим управляющее напряжение, которое выключает ключевой транзистор. После этого он будет находиться в положении отсечки. ЭДС индукции выравнивающего дросселя будет преграждать путь для изменения тока, который пойдет по цепи через нагрузку от дросселя, по общему проводнику, диод, и опять придет на дроссель. Емкость С1 будет разряжаться и будет удерживать напряжение на выходе.

При подаче отпирающей разницы потенциалов между истоком и затвором транзистора, он перейдет в режим насыщения и вся цепочка вновь повторится.

Инвертирующий стабилизатор

Импульсные стабилизаторы инвертирующего типа используют для подключения потребителей с постоянным напряжением, полюсность которого имеет противоположное направление полюсности разности потенциалов на выходе устройства. Его значение может быть выше сети питания, и ниже сети, в зависимости от настройки стабилизатора. Гальваническая изоляция сети питания и нагрузки отсутствует. Импортные приборы инвертирующего типа называются buck-boost converter. На выходе таких приборов напряжение всегда ниже.

Подключим управляющую разность потенциалов, которое откроет транзистор между истоком и затвором. Он откроется, и ток пойдет по цепи от плюса по транзистору, дросселю к минусу. При таком процессе дроссель резервирует энергию с помощью своего магнитного поля. Отключим разность потенциалов управления от ключа на транзисторе, он закроется. Ток пойдет от дросселя по нагрузке, диоду, и возвратится в первоначальное положение. Резервная энергия на конденсаторе и магнитном поле будет расходоваться для нагрузки. Снова подадим питание на транзистор к истоку и затвору. Транзистор опять станет насыщаться и процесс повторится.

Преимущества и недостатки

Как и все приборы, модульный импульсный стабилизатор не идеален. Поэтому ему присущи минусы и плюсы. Разберем основные из преимуществ:

  • Простое достижение выравнивания.
  • Плавное подключение.
  • Компактные размеры.
  • Устойчивость выходного напряжения.
  • Широкий интервал стабилизации.
  • Повышенный КПД.

Недостатки прибора:

  • Сложная конструкция.
  • Много специфических компонентов, снижающих надежность устройства.
  • Необходимость в использовании компенсирующих устройств мощности.
  • Сложность работ по ремонту.
  • Образование большого количества помех частоты.

Допустимая частота

Функционирование импульсного стабилизатора возможно при значительной частоте преобразования. Это является основной отличительной чертой от устройств, имеющих трансформатор сети. Увеличение этого параметра дает возможность получить наименьшие габариты.

Для большинства приборов интервал частот будет равен 20-80 килогерц. Но при выборе ШИМ и ключевых приборов необходимо учесть высокие гармоники токов. Верхняя граница параметра ограничена определенными требованиями, которые предъявляются к радиочастотным приборам.

ИМПУЛЬСНЫЕ РЕГУЛЯТОРЫ ПОСТОЯННОГО НАПРЯЖЕНИЯ
для питания многоуровневых инверторов

Юрий Кумаков , соискатель степени к.т.н., Саратовский государственный технический университет

Перспективным направлением в развитии вентильных преобразователей частоты на основе автономных инверторов напряжения является применение схем с многоуровневой модуляцией выходного напряжения. Об одной из разработок в этой области – инверторах напряжения с мультиуровневой модуляцией – Юрий Александрович Кумаков уже рассказывал в нашем журнале («Новости ЭлектроТехники» № 6(36) 2005).
При разработке и внедрении многоуровневых схем возникает необходимость одновременного получения нескольких уровней постоянного напряжения для питания инвертора. В сегодняшнем материале автор рассматривает вопросы, связанные с применением для этой цели импульсных регуляторов постоянного напряжения.

В последние годы схемы вентильных преобразователей частоты на базе автономных инверторов напряжения (АИН) с многоуровневой ступенчатой модуляцией (СМ) или многоуровневой широтно-импульсной модуляцией (ШИМ) выходного напряжения получают всё более широкое распространение. С ростом числа уровней становится возможным формировать ступенчатое напряжение, которое аппроксимирует синусоидальное напряжение с точностью, определяемой числом уровней. В результате появляется возможность уменьшить потери мощности и снизить частоту ШИМ (если она применяется), а также существенно улучшить гармонический состав выходного напряжения АИН. Эти эффекты становятся более значимыми с увеличением числа уровней выходного напряжения . При разработке и внедрении многоуровневых схем появляется необходимость одновременного получения нескольких уровней постоянного напряжения для питания инвертора. В отдельных случаях этого удается достичь исключительно за счет схемных решений при использовании только одного источника питания (ИП) . В остальных случаях возникает необходимость одновременного применения нескольких ИП постоянного тока или напряжения.

СОВРЕМЕННЫЕ СПОСОБЫ ПИТАНИЯ АИН

Одним из перспективных направлений развития многоуровневых преобразователей стало использование многоячейковых структур. Каждая ячейка такой структуры состоит из однофазных мостовых преобразователей, выполненных на полностью управляемых ключах. Все ячейки соединяются последовательно на стороне переменного тока в каскады (преобразователи с такой схемой называются также каскадными). Ячейки получают питание от изолированных ИП постоянного тока, в общем случае имеющих разное напряжение .
Другим шагом стала разработка АИН с мультиуровневой модуляцией, большое число уровней выходного напряжения которых достигается за счет особого способа трансформаторного суммирования напряжений двух мостов. Однако АИН с мультиуровневой модуляцией также требуют наличия нескольких ИП. Например, АИН с 24-уровневой модуляцией требует трех, с 40-уровневой – четырех, с 60-уровневой – пяти ИП .
В некоторых случаях для этой цели можно использовать несколько двухобмоточных трансформаторов, каждый из которых соединен с неуправляемым выпрямителем. Этот способ вполне приемлем, однако стоимость подобного устройства может быть очень высокой.
Возможно и одновременное использование нескольких управляемых выпрямителей, имеющих на выходах разные уровни напряжения. Однако серьезным недостатком такого способа является импульсное потребление тока из входной сети, во многих случаях приводящее к искажению формы кривых напряжения и таким образом к ухудшению работы всех потребителей электроэнергии в той же сети. Эту проблему часто решают путем замены группы управляемых выпрямителей на группу импульсных регуляторов постоянного напряжения (ИРПН) 1 , питающихся от одного или от нескольких неуправляемых выпрямителей, снабженных LC-фильтром. Такой способ позволяет достичь потребления практически синусоидального тока из входной сети с cos j , близким к 1. Схемы с ИРПН имеют высокий КПД; наличие трансформаторов в них не требуется, однако по сравнению с трансформаторными ИП необходимы конденсаторы большой емкости как в самих ИРПН, так и в неуправляемом выпрямителе.

1 ИРПН также называют импульсными стабилизаторами напряжения (ИСН).

ТИПЫ ИРПН

Наиболее известными являются ИРПН трех типов:

  • понижающего (U вых меньше U вх);
  • повышающего (U вых больше U вх);
  • инвертирующего (U вых имеет произвольную величину, но обратно U вх по знаку).
Все три типа ИРПН (рис. 1, а, б, в) состоят из индуктивности (накопительного дросселя) L, регулирующего транзистора T, работающего в ключевом режиме, блокировочного диода VD, фильтрующего конденсатора C, системы управления СУ, формирующей сигналы управления ключом T, а также вспомогательного вольтметра V. Отличия состоят в порядке включения в схему перечисленных элементов и соответственно в алгоритме управления, заложенном в СУ. Принципы их работы описаны, например, в .
Наибольшее распространение получил ИРПН понижающего типа, в котором накопительный дроссель L одновременно является элементом сглаживающего LC-фильтра. В ИРПН повышающего и инвертирующего типов дроссель L не участвует в сглаживании пульсации выходного напряжения, которое достигается только за счет увеличения емкости конденсатора С, что приводит к увеличению массы и габаритов фильтра и устройства в целом.

Рис. 1
Схема ИРПН: а) понижающего типа,
б) повышающего типа,
в) инвертирующего типа




СРЕДСТВА УПРАВЛЕНИЯ ИРПН

Оптимальным алгоритмом управления ключом T для ИРПН любого типа является применение ШИМ, поскольку:

  • обеспечиваются высокий КПД и оптимальная частота преобразования независимо от напряжения первичного источника питания Uвх и тока нагрузки;
  • частота пульсации на нагрузке является неизменной, что имеет существенное значение для ряда потребителей электроэнергии;
  • реализуется возможность одновременной синхронизации частот преобразования неограниченного числа ИРПН, что исключает опасность возникновения биений частот при питании нескольких ИРПН от общего первичного источника постоянного тока.
Последнее дает возможность питать несколько ИРПН от одного неуправляемого выпрямителя с LC-фильтром .
Вольтметр V и система управления (СУ) часто выполняются на аппаратной элементной базе. В таком случае эти два узла для каждого отдельного ИРПН включают в себя делитель напряжения, источник опорного напряжения, сравнивающий элемент, усилитель рассогласования, формирователь синхронизирующего напряжения (задающий генератор) и пороговое устройство, осуществляющее формирование модулированных по длительности импульсов.
Современная техника позволяет использовать в качестве СУ промышленный микроконтроллер (МК). На рынке МК можно найти кристаллы со встроенными аналого-цифровыми преобразователями (АЦП) и ШИМ-модуляторами. Тогда единственным элементом в цепи управления, помимо СУ, будет вольтметр V, представляющий собой делитель напряжения (или, в зависимости от возможностей выбранного кристалла, делитель напряжения и внешний АЦП).
Преимущества МК особенно очевидны, когда один МК обслуживает несколько ИРПН (что актуально в системе питания многоуровневого АИН). Тогда для каждого ИРПН независимыми элементами являются лишь делители напряжения, что приводит к снижению стоимости устройств. Плюсом МК является и возможность прямо в ходе работы гибко настраивать алгоритм управления одним или всеми ИРПН. Например, можно легко повысить или понизить частоту ШИМ в зависимости от чувствительности нагрузки к пульсациям выходного напряжения АИН.
Из-за высокой частоты нескольких ШИМ, скважность каждого импульса которых контролируется, дополнительные задачи возлагать на МК, управляющий несколькими ИРПН, нежелательно.

МЕТОДИКИ УПРАВЛЕНИЯ ИРПН

Традиционно управление ИРПН осуществляется таким образом, чтобы ток через дроссель L был непрерывным. Тогда внешние и регулировочные характеристики ИРПН при непрерывном токе являются линейными. При прерывистом токе они нелинейны, а регулировочные характеристики еще и неоднозначны. Кроме того, расчеты режима прерывистого тока более сложны, чем непрерывного. При выборе режима работы ИРПН для питания АИН необходимо учитывать, что для обеспечения режима непрерывного тока ИРПН индуктивность дросселя должна быть достаточно велика, причем её размер возрастает с уменьшением пульсаций входного тока и выходного напряжения. Однако спецификой АИН как нагрузки ИП является импульсный характер потребления тока со скачкообразным изменением от нуля до рабочего значения и наоборот, что обусловлено вентильным распределением энергии в инверторах напряжения. Накопление значительной энергии в дросселе может привести к всплескам выходного напряжения в моменты отключения вентиля и просадке напряжения в моменты его включения. Поэтому при питании АИН более оптимальным является режим прерывистого тока дросселя, для осуществления которого требуется меньшая индуктивность дросселя.
Итак, преимуществами прерывистого режима ИРПН являются: отсутствие всплесков напряжения при питании импульсной нагрузки и меньший номинал дросселя при том же значении максимального тока ИРПН, отсутствие колебаний выходного напряжения длительностью более одного-двух тактов ШИМ. Недостаток – увеличение емкости конденсатора C. Минусы, связанные с нелинейностью характеристик, при микропроцессорном управлении ИРПН большого значения не имеют.

РАСЧЕТ СХЕМ ДЛЯ РЕЖИМА ПРЕРЫВИСТОГО ТОКА

Исходными (задаваемыми) параметрами ИРПН являются входное и выходное напряжения ИРПН U вх и U вых, максимальный ток I max , потребляемый нагрузкой, и предельная величина пульсаций U вых при токе I max , которую можно обозначить D U max . При питании многоуровневого АИН значения U вх и U вых являются постоянными.
При реализации схемы ИРПН необходимо, отталкиваясь от значений этих четырех величин, рассчитать значения частоты переключения ключа T в режиме ШИМ T ШИМ, емкости конденсатора C, индуктивности дросселя L и найти оптимальный алгоритм расчета величины Q – скважности (коэффициента заполнения) импульса ШИМ, равной отношению времени открытия ключа T к длительности одного периода ШИМ. Поскольку величины T ШИМ, C и D U max непосредственно связаны между собой, то одна из величин TШИМ и C может быть задаваемой, а значение второй должно рассчитываться по заданному параметру и величине D U max .

РАСЧЕТ ЕМКОСТИ C И ЧАСТОТЫ T ШИМ

Из рис. 1 видно, что конденсатор C, формирующий выходное напряжение U вых и сглаживающий пульсации, обусловленные импульсным характером работы ключа, является одинаковым элементом ИРПН всех типов. Поэтому расчет емкости C или величины T ШИМ для ИРПН всех типов выполняется одинаково. При этом целесообразно отталкиваться от максимальной величины пульсаций выходного напряжения D U max в режиме прерывистого тока индуктивности. Для случая, когда задаваемой величиной является частота T ШИМ, а вычисляемой – C, емкость C можно рассчитать по формуле:

(1)
что является минимальной емкостью, при которой величины пульсаций напряжения при токе не выше номинального (I max) не превысят DUmax. Например, если для ИРПН мощностью 165 кВт (3,3 кВ, 50 А) взять D U max = 30 В (коэффициент пульсаций при этом составит менее 1%), а T ШИМ = 20 кГц, то величина C составит 83 мкФ.
Иногда размер емкости может быть искусственно увеличен, если она, помимо сглаживания пульсаций постоянного напряжения, используется для других целей. Например, выходные конденсаторы ИРПН могут использоваться также для возврата реактивной мощности нагрузки, питаемой АИН, как это сделано в мультиуровневых АИН . Существуют различные методики оценки емкости, необходимой для возврата реактивной мощности. Однако если рассчитанная по ним величина C превышает значение, полученное по формуле (1), то имеет место второй случай, когда величина C становится задаваемой. Тогда выгодно понизить частоту ШИМ до такого минимального значения, при котором пульсации выходного напряжения не превысят D U max . Это легко сделать, преобразовав формулу (1) к виду:
(2)
Стоит, однако, заметить, что увеличение емкости C сказывается на стоимости устройства. Поэтому в некоторых случаях, если это допустимо, целесообразно расчет C производить по формуле (1), а возврат реактивной мощности осуществлять не в емкость C, а во входную сеть. Для этого необходима схемная доработка ИРПН – добавление цепи, отвечающей за рекуперацию избыточной энергии. Два варианта доработки ИРПН понижающего типа до реверсивного по току рекуперативного ИРПН приведены на рис. 2.
В неуправляемом варианте (рис. 2, а) диод DR1 препятствует протеканию обратного тока через емкость, а диод DR2 направляет обратный ток в цепь источника питания. Такой вариант более прост в реализации, но имеет ряд недостатков, например, в некоторых случаях он может приводить к перенапряжениям нагрузки.
Более приемлемым является управляемый вариант (рис. 2, б). При превышении напряжением емкости C требуемого значения U вых система управления СУ с помощью управляемого ключа TR (при закрытом ключе T) производит накопление энергии в дросселе L, после чего при размыкании ключа накопленная энергия через диод DR поступает в сеть входного источника питания. Процесс повторяется с частотой, сравнимой с T ШИМ или равной ей, до тех пор, пока напряжение емкости не достигнет допустимых значений.

Рис. 2. Схемы рекуперативных ИРПН понижающего типа
а) неуправляемого,
б) управляемого

Расчет индуктивности L

Следующим шагом при расчете схем ИРПН является получение значения индуктивности L. Из рис. 1 следует, что для ИРПН понижающего типа как ток зарядки, так и ток разрядки дросселя L протекает на землю через емкость C. Для ИРПН повышающего и инвертирующего типов ток разрядки дросселя протекает через емкость, а ток зарядки – нет. Поэтому методики расчета величины L отличаются.

ИРПН повышающего и инвертирующего типов

Рассмотрим сначала расчет индуктивности L для ИРПН повышающего и инвертирующего типов. Допустим, емкость C, заряженную в текущий момент до напряжения U C , необходимо дозарядить за один период ШИМ до требуемого напряжения U вых. Разница заданного и текущего напряжений при этом составляет dU C = U вых – U C . Тогда величины L и Q для этих типов ИРПН в режиме прерывистого тока будут связаны приближенной формулой:

(3)
Предполагается, что за время замыкания ключа реальное значение входного напряжения U вх существенно не изменится, ток через индуктивность в момент замыкания ключа равен нулю, а величина dU C не превышает D U max , причем D U max значительно меньше требуемого выходного напряжения U вых. Полученная формула связывает величины Q и L, поэтому, чтобы выразить одну из этих величин, необходимо определить значение второй. Для того чтобы оценить значение L, зададим номинальную скважность Q 0 для некоторой величины (dU C) 0 (важно, чтобы выбранное значение Q 0 не приводило к переходу в режим непрерывного тока дросселя). Например, при отклонении (dU C) 0 = D U max скважность Q 0 можно выбрать равной 0,3 или 0,4. Тогда, определяя L из формулы (3), получаем окончательное выражение: Видно, что отличие формулы (5) от формулы (3) состоит в методике расчета величины K. Применяя метод оценки L, использованный для получения формулы (4), находим: Подставив в эту формулу значение L, рассчитанное соответственно по формуле (4) или (6), после сокращения получаем формулу для расчета скважности (коэффициента заполнения) импульса ШИМ:
(8)
Эта формула является регулировочной характеристикой ШИМ. Стоит сделать оговорку, что Q теоретически не может превышать 1, следовательно, если рассчитанное значение в какой-то момент превышает 1, необходимо принять его равным 1. На практике рекомендуется ограничить Q значением 0,7–0,9 для предотвращения чрезмерного нарастания тока через индуктивность (рис. 3).

Рис. 3. Зависимости Q от dU C при разных Q 0 .
Все (dU C) 0 = 1 В; Q max = 0,9

Как отмечалось выше, статическая регулировочная характеристика при непрерывном токе дросселя является линейной; при прерывистом токе, как видно из формулы (8) и рис. 3, она нелинейная, однако управляющий МК легко может хранить её в виде таблицы (достаточно 50–100 значений). ИП с таким алгоритмом управления хорошо переносит импульсную нагрузку, не давая просадки или всплеска напряжения в начале или в конце импульсов выходного тока. На рис. 4 представлены результаты моделирования установившегося режима в ИРПН понижающего типа.

Рис. 4. Процессы в ИРПН понижающего типа в установившемся режиме.
U вх = 180 В; U вых = 60 В; ток нагрузки 6 А; T ШИМ = 100 кГц

Особенности пуска ИРПН

Приведенные выше расчеты регулировочной характеристики пригодны лишь для установившегося режима работы ИРПН. Особым случаем является пуск ИРПН, при котором напряжение U C изначально равно нулю. В этом случае применение алгоритма для любого типа ИРПН приведет к чрезмерному накоплению энергии в дросселе L, что в свою очередь вызовет значительный всплеск напряжения емкости C после достижения на ней заданного значения U вых и отключения вентиля T.
Проблема решается двумя путями. Первый состоит в том, что после включения питания управляющий МК должен ограничить максимальную скважность Q max значениями 0,2–0,3 до тех пор, пока напряжение емкости не станет приблизительно равным U вых. Но лучший способ – запретить на время зарядки C работу АИН, добившись таким образом обнуления выходного тока, при этом Q 0 (при (dU C) 0 = D U max) на время зарядки C ограничивается значениями порядка 0,1 или менее.
На рис. 5 представлены результаты моделирования пуска ИРПН понижающего типа при отключенной нагрузке. Видно, что применение описанного алгоритма позволяет избежать сильного всплеска выходного напряжения и последующих колебаний выходного напряжения после достижения заданного значения U вых.
Процессы в реальных сетях могут отличаться от изображенных на рис. 5 в связи, например, с ограничением значения входного тока ИРПН. В последнем случае процесс зарядки емкости удлиняется.

Рис. 5. Процессы в ИРПН понижающего типа в режиме пуска без нагрузки и в момент после включения нагрузки.
U вх = 180 В; U вых = 60 В; ток нагрузки 6 А; T ШИМ = 10–5 с; Q 0 (пусковое) = 0,08; Q 0 (рабочее) = 0,6

Выводы

1. Все типы ИРПН пригодны для питания многоуровневых АИН. Тип ИРПН для питания конкретных АИН может выбираться исходя из соотношения U вх и U вых, а также из рассчитываемых индуктивностей дросселя L для разных модификаций ИРПН.
2. При питании многоуровневых АИН оптимальным является режим прерывистого тока дросселя, поскольку ИП на базе такого ИРПН лучше приспособлен для питания импульсной нагрузки (отсутствуют всплески и просадки выходного напряжения в начале и в конце импульсов выходного тока). Кроме того, режим прерывистого тока позволяет избежать нежелательных колебаний напряжения длительностью более одного-двух тактов ШИМ.
3. Управление несколькими ИРПН одного АИН целесообразно возлагать на один управляющий МК, оснащенный нужным числом АЦП и ШИМ-модуляторов. Управляющий МК должен предусматривать специальный режим пуска ИРПН с целью предотвращения перенапряжений нагрузки.

Литература

Бурман А.П., Розанов Ю.К., Шакарян Ю.Г. Перспективы применения в ЕЭС России гибких (управляемых) систем электропередачи переменного тока // Электротехника. – 2004. – № 8. – С. 30–36.
2. Лазарев Г. Л. Высоковольтные преобразователи для частотно-регулируемого электропривода. Построение различных систем // Новости ЭлектроТехники. – 2005. – № 2(32).
3. Кумаков Ю.А. Инверторы напряжения со ступенчатой модуляцией и активная фильтрация высших гармоник // Новости ЭлектроТехники. – 2005. – № 6(36).
4. Кумаков Ю.А. Инвертор напряжения с мультиуровневой модуляцией: Патент РФ на полезную модель: МПК8 Н 02 М 7/48 / Автор и заявитель Кумаков Ю.А.; заявка № 2006114517/17 от 27.04.2006.
5. Импульсные стабилизаторы // Электроника и микросхемотехника [Электронный ресурс]: Интернет-учебник / Винницкий гос. тех. ун-т, институт АЭКСУ, каф. МПА; под ред. к.т.н. Ю.В. Шабатуры. – http://faksu.vstu.vinnica.ua/SiteNEV/rus/erectronic_inter/ew2/ch2-3/12_4.htm.
6. Зиновьев Г.С. Основы силовой электроники: Учебник. – Новосибирск: Изд-во НГТУ, 2000. – Ч. 2 – С. 9–31.

При работе с множеством различных технологий часто стоит вопрос: как управлять мощностью, которая доступна? Что делать, если её необходимо понизить или повысить? Ответом на эти вопросы служит ШИМ-регулятор. Что он собой представляет? Где применяется? И как самому собрать такой прибор?

Что такое широтно-импульсная модуляция?

Без выяснения значения этого термина продолжать не имеет смысла. Итак, широтно-импульсная модуляция — это процесс управления мощностью, которая подводится к нагрузке, осуществляемая путём видоизменения скважности импульсов, которая делается при постоянной частоте. Существует несколько типов широтно-импульсной модуляции:

1. Аналоговый.

2. Цифровой.

3. Двоичный (двухуровневый).

4. Троичный (трехуровневый).

Что такое ШИМ-регулятор?

Теперь, когда мы знаем, что такое широтно-импульсная модуляция, можно поговорить и о главной теме статьи. Используется ШИМ-регулятор для того, чтобы регулировать напряжение питания и для недопущения мощных инерционных нагрузок в авто- и мототехнике. Это может звучать слишком сложно и лучше всего пояснить на примере. Допустим, необходимо сделать, чтобы лампы освещения салона меняли свою яркость не сразу, а постепенно. Это же относится к габаритным огням, автомобильным фарам или вентиляторам. Воплотить такое желание можно путём установки транзисторного регулятора напряжения (параметрический или компенсационный). Но при большом токе на нём будет выделяться чрезвычайно большая мощность и потребуется установка дополнительных больших радиаторов или дополнение в виде системы принудительного охлаждения с использованием маленького вентилятора, снятого с компьютерного устройства. Как видите, данный путь влечёт за собой много последствий, которые необходимо будет преодолеть.

Настоящим спасением из данной ситуации стал ШИМ-регулятор, который работает на мощных полевых силовых транзисторах. Они могут коммутировать большие токи (которые достигают 160 Ампер) при напряжении всего в 12-15В на затворе. Следует отметить, что сопротивление у открытого транзистора довольное мало, и благодаря этому можно заметно снизить уровень рассеиваемой мощности. Чтобы создать свой собственный ШИМ-регулятор, понадобится схема управления, которая сможет обеспечить разность напряжения между истоком и затвором в границах 12-15В. Если этого не получится достичь, то сопротивление канала будет сильно увеличиваться и значительно возрастёт рассеиваемая мощность. А это, в свою очередь, может привести к тому, что транзистор перегреется и выйдет из строя.

Выпускается целый ряд микросхем для ШИМ-регуляторов, которые смогут выдержать повышение входного напряжения до уровня 25-30В, при том, что питание будет всего 7-14В. Это позволит включать выходной транзистор в схеме вместе с общим стоком. Это, в свою очередь, необходимо для подключения нагрузки с общим минусом. В качестве примеров можно привести такие образцы: L9610, L9611, U6080B ... U6084B. Большинство нагрузок не потребляет ток больше 10 ампер, поэтому они не могут вызвать просадку напряжения. И как результат - использовать можно и простые схемы без доработки в виде дополнительного узла, который будет повышать напряжение. И именно такие образцы ШИМ-регуляторов и будут рассмотрены в статье. Они могут быть построены на основе несимметрического или ждущего мультивибратора. Стоит поговорить про ШИМ-регулятор оборотов двигателя. Об этом далее.

Схема №1

Эта схема ШИМ-регулятора собиралась на инверторах КМОП-микросхемы. Она является генератором прямоугольных импульсов, который действует на 2-х логических элементах. Благодаря диодам здесь отдельно изменяется постоянная времени разряда и заряда частотозадающего конденсатора. Это позволяет менять скважность, которую имеют выходные импульсы, и как результат - значение эффективного напряжения, которое есть на нагрузке. В данной схеме возможно использование любых инвертирующих КМОП-элементов, а также ИЛИ-НЕ и И. В качестве примеров подойдут К176ПУ2, К561ЛН1, К561ЛА7, К561ЛЕ5. Можно использовать и другие виды, но перед этим придётся хорошо подумать о том, как правильно сгруппировать их входы, чтобы они могли выполнять возложенный функционал. Преимущества схемы - доступность и простота элементов. Недостатки - сложность (практически невозможность) доработки и несовершенство относительно изменения диапазона выходного напряжения.

Схема №2

Обладает лучшими характеристиками, нежели первый образец, но сложнее в выполнении. Может регулировать эффективное напряжение на нагрузке в диапазоне 0-12В, до которого изменяется с начального значения 8-12В. Максимальный ток зависит от типа полевого транзистора и может достигать значительных значений. Учитывая, что выходное напряжение является пропорциональным входному управляющему, данную схему можно использовать как часть системы регулирования (для поддержки уровня температуры).

Причины распространения

Чем привлекает автолюбителей ШИМ-регулятор? Следует отметить стремление к увеличению КПД, когда проводится построение вторичных для электронной аппаратуры. Благодаря данному свойству можно данную технологию найти также при изготовлении компьютерных мониторов, дисплеев в телефонах, ноутбуках, планшетах и подобной техники, а не только в автомобилях. Также следует отметить значительную дешевизну, которой отличается данная технология при своём использовании. Также, если решите не покупать, а собирать ШИМ-регулятор собственноручно, то можно сэкономить деньги при усовершенствовании своего собственного автомобиля.

Заключение

Что ж, вы теперь знаете, что собой представляет ШИМ-регулятор мощности, как он работает, и даже можете сами собрать подобные устройства. Поэтому, если есть желание поэкспериментировать с возможностями своего автомобиля, можно сказать по этому поводу только одно - делайте. Причем можете не просто воспользоваться представленными здесь схемами, но и существенно доработать их при наличии соответствующих знаний и опыта. Но даже если всё не получится с первого раза, то вы сможете получить очень ценную вещь - опыт. Кто знает, где он может в следующий раз пригодиться и насколько важным будет его наличие.



Понравилась статья? Поделиться с друзьями: