Реферат: Введение в криптографию. Введение в криптографию. Общие вопросы, проблемы и решения

Введение в криптографию - страница №1/5

1.2. Из истории криптографии 7

1.3. Модели источников открытых текстов 16

1.3.1 Детерминированные модели 16

1.3.2 Вероятностные модели 17

1.4. Модели шифров 20

2. Симметричные криптосистемы и их свойства 23

2.1. Шифры замены 23

2.2. Шифры перестановки 25

2.3. Поточные криптосистемы 28

2.4. Блочные криптосистемы 34

2.4.1. Принципы построения блочных криптосистем 34

2.4.2. Режимы шифрования 37

2.4.3. Усложнение блочных криптосистем 40

2.4.4. Блочная криптосистема DES 41

2.4.5. Блочная криптосистема ГОСТ 28147-89 43

2.4.6. Конкурс AES и блочная криптосистема Rijndael 44

3. Методы криптоанализа симметричных криптосистем 49

3.1. Задачи и принципы криптоанализа 49

3.2. Метод полного перебора 50

3.3. Методы бесключевого чтения 52

3.4. Методы криптоанализа с использованием теории

статистических решений 56

3.5. Линейный криптоанализ 59

3.6 Дифференциальный (разностный) криптоанализ 64

4. Теория стойкости криптосистем 68

4.1. Совершенно стойкие криптосистемы 68

4.2. Идеально стойкие криптосистемы 70

4.3. Практическая стойкость криптосистем 73

4.4. Имитостойкость и помехоустойчивость криптосистем 76

Литература 80

1. Введение в криптографию
Исторический процесс развития средств и методов защиты информации выработал три основных способа защиты.

Первый способ защиты информации – физическая защита от противника материального носителя информации (пергамента, бумаги, магнитной ленты и т.д.), например, передача информации специальным курьером с охраной, перстень с контейнером для тайного послания и т.п.

Второй способ защиты информации – стеганография. Применение стеганографии обеспечивает сокрытие от противника самого факта передачи информации. Стеганографическая защита информации обеспечивается различными способами, например:

Использованием «невидимых» носителей информации (микропленок);

Применением симпатических чернил, которые становятся видимыми при соответствующей химической обработки носителя информации;

Маскированием секретной информации обычным посланием и т.д.

В современной стеганографии имеется достаточно широкий спектр методов защиты информации .

Третий, наиболее надежный и распространенный способ защиты информации – криптографический. Именно криптографическим методам защиты информации и посвящено данное учебное пособие.


1.1. Основные понятия и определения криптографии
Рассмотрим основные понятия, принятые в криптографии , и вначале определим, что такое криптография.

Криптография - это раздел прикладной математики (криптологии), изучающий модели, методы, алгоритмы, программные и аппаратные средства преобразования информации (шифрования) в целях сокрытия ее содержания, предотвращения видоизменения или несанкционированного использования. На решение взаимообратных задач нацелен криптоанализ. Криптоанализ - это раздел прикладной математики (криптологии), изучающий модели, методы, алгоритмы, программные и аппаратные средства анализа криптосистем или их входных и выходных сигналов с целью извлечения конфиденциальных параметров, включая открытый текст. Таким образом, криптография и криптоанализ составляют единое целое и образуют науку - криптологию , которая с самого начала развивалась как двуединая наука.

Исторически центральным понятием криптографии является понятие шифра. Шифром называется совокупность обратимых криптографических преобразований множества открытых текстов на множество зашифрованных текстов, проводимых с целью их защиты. Конкретный вид криптографического преобразования открытого текста определяется с помощью ключа шифрования. Открытым текстом называют исходное сообщение, которое подлежит зашифрованию. Под зашифрованием понимается процесс применения обратимого криптографического преобразования к открытому тексту, а результат этого преобразования называется шифртекстом или криптограммой . Соответственно, процесс обратного криптографического преобразования криптограммы в открытый текст называется расшифрованием .

Расшифрование нельзя путать с дешифрованием. Дешифрование (дешифровка , взлом ) - процесс извлечения открытого текста без знания криптографического ключа на основе перехваченных криптограмм. Таким образом, расшифрование проводится законным пользователем, знающим ключ шифра, а дешифрование - криптоаналитиком.

Криптографическая система - семейство преобразований шифра и совокупность ключей. Само по себе описание криптографического алгоритма не является криптосистемой. Только дополненное схемами распределения и управления ключами оно становится системой.

Классификация криптосистем представлена на рис. 1.1.




Рис. 1.1. Классификация криптосистем
Более полная классификация криптосистем приведена, например в .

Симметричные криптосистемы (криптосистемы с секретным ключом ) построены на принципе сохранения в тайне ключа шифрования. На рис. 1.2 представлена упрощенная структурная схема симметричной криптосистемы. Перед использованием симметричной криптосистемы пользователи должны получить общий секретный ключ и исключить доступ к нему злоумышленника. Открытое сообщение
подвергается криптографическому преобразованию
и полученная криптограмма по открытому каналу связи передается получателю, где осуществляется обратное преобразование
с целью выделения исходного открытого сообщения
.

Рис. 1.2. Упрощенная структурная схема симметричной криптосистемы


Симметричные криптосистемы классифицируются по различным признакам : по виду криптографического преобразования; по конструктивным принципам; по виду защищаемой информации; по криптографической стойкости и т.д. Чаще всего используются первые два признака классификации. В связи с этим множество симметричных криптосистем делится:

По виду криптографического преобразования – на шифры перестановки, шифры замены и композиционные шифры;

По конструктивным принципам – на поточные криптосистемы и блочные криптосистемы.

Под шифром перестановки понимается переупорядочение букв исходного сообщения, в результате которого он становиться нечитаемым. Под шифром замены понимается преобразование, которое заключается в замене букв исходного сообщения на другие буквы по более или менее сложному правилу. Композиционные шифры строятся на основе шифров замены и перестановки. Блочные симметричные криптосистемы (БСК) представляют собой семейство обратимых криптографических преобразований блоков исходного сообщения. Поточные криптосистемы (ПСК) преобразуют посимвольно исходное сообщение в криптограмму.

Отличительной особенностью асимметричных криптосистем (криптосистем с открытым ключом ) является то, что для зашифрования и расшифрования информации используются разные ключи. На рис. 1.3 представлена упрощенная структурная схема асимметричной криптосистемы. Криптосистема с открытым ключом определяется тремя алгоритмами: генерации ключей, шифрования и расшифрования. Алгоритм генерации ключей позволяет получить пару ключей
, причем
. Один из ключей публикуется, он называется открытым , а второй , называется закрытым (или секретным) и храниться в тайне. Алгоритмы шифрования
и расшифрования
таковы, что для любого открытого текста
выполняется равенство
.

Рис. 1.3. Упрощенная структурная схема асимметричной криптосистемы


1.2. Из истории криптографии
По мнению ряда специалистов, криптография по возрасту – ровесник египетских пирамид. В документах древних цивилизаций (Индии, Египта, Месопотамии) есть сведения о системах и способах составления шифрованных писем.

В криптографии с древних времен использовались два вида шифров: замены (подстановки) и перестановки. Историческим примером шифра замены является шифр Цезаря (I век до н.э.), описанный историком Древнего Рима Светонием. Гай Юлий Цезарь использовал в своей переписке шифр собственного изобретения. Применительно к русскому языку он состоит в следующем. Выписывается алфавит, а затем под ним выписывается тот же алфавит, но с циклическим сдвигом на три буквы влево:



А

Б

В

Г

Д

Е



Э

Ю

Я

Г

Д

Е

Ё

Ж

З



А

Б

В

Зашифрование заключается в выборе буквы из первой строки и замену ее на букву второй строки, расшифрование представляет собой обратную операцию. Например, РИМ – УЛП. Ключом шифра Цезаря является величина циклического сдвига. Гай Юлий Цезарь всю жизнь использовал один и тот же ключ – сдвиг на 3 буквы. Приемник Юлия Цезаря – Цезарь Август использовал тот же шифр, но со сдвигом на одну букву. Светоний не приводит фактов дешифрования шифра Цезаря, однако в те времена, когда царила всеобщая неграмотность, даже обычное открытое послание могло остаться непрочитанным.

Одним из первых физических приборов, реализующих шифр перестановки является скитала . Он был изобретен в древней Спарте (V век до н.э.). Кроме Древней Греции прибор скитала использовался широко и в Древнем Риме. Скитала (в переводе - «жезл») представляет собой цилиндр заданного диаметра. На цилиндр наматывался ремень из пергамента, на который наносился текст сообщения вдоль оси цилиндра. Затем ремень сматывался и отправлялся получателю сообщения. Последний, имея аналогичный цилиндр, расшифровывал сообщение. Ключом шифра является диаметр скитала. Изобретение дешифровального устройства приписывается Аристотелю. Он предложил использовать для дешифрования конусообразное «копье», на которое наматывался перехваченный ремень, до тех пор, пока не появлялся осмысленный текст.

Одним из первых исторических имен, которое упоминается в связи с криптографией, это имя Энея - легендарного полководца, защитника Трои. В области тайнописи Энею принадлежат два изобретения. Первое из них – так называемый диск Энея . Его принцип прост. На диске размером 10-15 см и толщиной 1-2 см высверливались отверстия по числу букв алфавита. В центре диска закреплена катушка с нитью. При зашифровании нитка последовательно протягивалась через отверстия соответствующие буквам послания. Диск отсылался получателю, который вытягивал нитку из отверстий и получал сообщение в обратном порядке. Другим устройством является линейка Энея . Здесь вместо диска использовалась линейка с числом отверстий, равным числу букв в алфавите. Буквы по отверстиям располагались в произвольном порядке. К линейке прикреплялась катушка с нитью. При шифровании нить протягивалась через отверстие, соответствующее букве шифруемого послания, при этом на нити в месте прохождения отверстия завязывался узелок. Таким образом, зашифрованное послание представляло собой нить с узелками, в которой каждой букве ставилось в соответствие расстояние между узелками нити. Ключом шифра являлся порядок следования букв по отверстиям линейки. Аналогичное линейке Энея кипу (узелковое письмо) получило широкое распространение у индейцев Центральной Америки.

Еще оно изобретение древних греков – квадрат Полибия (Полибий – греческий государственный деятель, полководец, историк III века до н.э):



A

B

C

D

E

A

A

B

C

D

E

B

F

G

H

I,J

K

C

L

M

N

O

P

D

Q

R

S

T

U

E

V

W

X

Y

Z

Применительно к современному латинскому алфавиту шифрование по этому квадрату заключалось в следующем. Шифруемая буква заменялась на координаты квадрата, в котором она записана. Так буква R заменяется на DB. При расшифровании каждая пара букв определяет соответствующую букву сообщения. Например, TABLE – DDAAABCAAE. Ключом этого шифра является сам квадрат. Усложненный вариант квадрата Полибия заключается в произвольном порядке записи букв в квадрате. При этом для запоминания такого произвольного порядка использовался лозунг, который представлял собой слово, записываемое без повтора букв в квадрат, а оставшиеся клетки квадрата заполнялись по порядку их следования остальными буквами алфавита. Например, THE APPLE соответствует THEAPL.

Интересно отметить, что в несколько измененном виде квадрат Полибия дошел до наших дней и получил название «тюремный шифр». Для его использования достаточно знать только естественный порядок букв в алфавите. Стороны квадрата обозначаются не буквами, а цифрами. Каждая цифра кодируется определенным количеством стуков. При передаче сообщения сначала «отстукивается» номер строки, а затем номер столбца. «Тюремный шифр» строго говоря, не является шифром, это способ кодировки сообщения с целью его приведения к виду удобному для передачи по каналу связи (тюремная стена).

Во времена средневековья европейская криптография приобрела сомнительную славу, отголоски которой слышаться и в наши дни. Дело в том, что криптографию стали отождествлять с черной магией, астрологией, алхимией, к шифрованию призывались мистические силы. Для шифрования сообщений рекомендовалось использовать «магические квадраты» . Магия этих квадратов заключалась в том, что сумма чисел по строкам, столбцам и полным диагоналям равнялась одному числу. Шифрование по «магическому квадрату» заключалось в следующем. Буквы сообщения вписывались в квадрат согласно записанным в них числам, а в пустые клетки вставлялись произвольные буквы. Шифртекст выписывался в оговоренном заранее порядке. Например, сообщение ПРИЕЗЖАЮ СЕГОДНЯ зашифрованное с помощь «магического квадрата»:


16 У

3 И

2 Р

13 Д

5 З

10 Е

11 Г

8 Ю

9 С

6 Ж

7 А

12 О

4 Е

15 Я

14 Н

1 П

имеет вид УИРДЗЕГЮСЖАОЕЯНП. Данный шифр – обычный шифр перестановки, однако считалось, что особую стойкость ему придает волшебство «магического квадрата».

В XV веке аббат Тритемий сделал два новаторских предложения в области криптографии: он предложил шифр «Аве Мария» и шифр, основанный на периодически сдвигаемом ключе. Наиболее серьезное предложение Тритемия, дошедшее до наших дней, заключается в придуманной им таблице:



A

B

C

D



W

X

Y

Z

B

C

D

E



X

Y

Z

A

C

D

E

F



Y

Z

A

B



















Y

Z

A

B



U

V

W

X

Z

A

B

C



V

W

X

Y

Первая буква текста шифруется по первой строке, вторая буква по второй строке и так далее. Первая строка одновременно является строкой букв открытого текста. Например, FIGHT – FJIKX. В первоначальном варианте в шифре Тритемия отсутствовал ключ. Секретом являлся сам способ шифрования. Дальнейшее усложнение шифра шло двумя путями: введением произвольного порядка расположения букв в таблице; усложнением порядка выбора строк таблицы при шифровании. Следует сказать, что шифр Цезаря является частным случаем шифра Тритемия.

Шифр «Аве Мария» основан на принципе замены букв шифруемого текста на целые слова, из которых составлялись внешне невинные сообщения. Например, Н – «Я», «ЗДЕСЬ»; Е – «ЖДУ», «БУДУ»; Т – «ДОМА», «ВЕЧЕРОМ». Тогда открытому сообщению НЕТ могут соответствовать послания «Я ЖДУ ДОМА», «ЗДЕСЬ БУДУ ВЕЧЕРОМ».

В XVII веке английский философ и ученый лорд-канцлер Френсис Бэкон выдвинул главные требования к шифрам: «Они не должны поддаваться дешифрованию, не должны требовать много времени для написания и чтения, не должны возбуждать никаких подозрений». Эти требования актуальны и сегодня.

Широко использовали шифры и братства «вольных каменщиков» (масонов). Шифр «вольных каменщиков» является шифром замены и вопреки распространенному мнению не является стойким, но представляет определенный интерес. Шифрование заключается в замене букв открытого текста символами по правилу:



А:

B:

C:

J.

K.

L.

S

T

U

D:

E:

F:

M.

N.

O.

V

W

X

G:

H:

I:

P.

Q.

R.

Y

Z

Например, APPLE соответствует криптограмме вида:

:

.

.

.

:

При походе на Россию Наполеон использовал шифр «вольных каменщиков» в низших звеньях своей связи, однако шифр достаточно быстро был раскрыт русскими дешифровальщиками.

В XVI веке итальянец Альберти впервые выдвинул идею двойного шифрования, т.е. текст после первого шифрования подвергался повторному шифрованию. Альберти также принадлежит шифр, который он называл «шифром, достойным королей». Реализация шифра осуществлялась с помощью шифровального диска. На внешний неподвижный диск наносились буквы и цифры под которыми располагались буквы и цифры внутреннего подвижного диска. Процесс шифрования прост – буквам и цифрам открытого текста ставились в соответствие буквы и цифры внутреннего диска. После зашифровывания слова послания внутренний диск сдвигался на один шаг. Начальное положение дисков заранее оговаривалось. Диск Альберти с незначительными изменениями использовался вплоть до начала XX века.

В XVI веке заметный вклад в развитие криптографии внесли Матео Ардженти, Жовани Батиста Белазо, Джовани Батиста Порта, Кордано и др. Матео Ардженти был криптографом папы римского, именно ему принадлежит идея использования слова-лозунга для придания алфавиту легко запоминаемого смешанного вида. Ардженти также предложил вставлять в шифртекст большое количество букв «пустышек», устранять пунктуацию, не вставлять в шифртекст открытые слова («клер»), заменять буквы шифртекста на цифры. Белазо и Порта развили идеи Ардженти в своих трудах «Шифр сеньора Белазо» и «О тайной переписке».

Существенный вклад в развитие криптографии внес математик, врач и философ Кордано. Предложенный им шифр вошел в историю под названием «решетка Кордано». «Решетка Кордано» - это шифр перестановки, суть которого заключается в следующем. Брался лист плотного материала (картон, пергамент), представляющий собой квадрат в котором вырезаны «окна». При шифровании квадрат накладывался на лист бумаги и сообщение вписывалось в «окна», затем квадрат поворачивался на 90 градусов и сообщение продолжали записывать в «окна» повернутого квадрата. Такая процедура продолжалась до полного поворота квадрата на 360 градусов. Главное требование «решетки Кордано» - при всех поворотах «окна» не должны попадать на дно и тоже место, а при полном повороте квадрата все места в шифртексте оказываются занятыми. Шифртекст считывался по строкам из полученной таблицы. Предложенный Кордано шифр лежит в основе знаменитого шифра Ришелье , в котором шифрованный текст внешне имел вид обычного послания. Накладывая на лист с таким посланием прямоугольник прорезанными с окнами можно было прочесть сообщение. Шифр Ришелье не относиться ни к шифрам замены, ни к шифрам перестановки, он представлял собой стеганографический способ защиты информации. Такого рода шифром пользовался русский писатель и государственный деятель А.С. Грибоедов будучи послом в Персии.

Кордано выдвинул, но не успел целиком реализовать идею «самоключа». Суть ее заключается в использовании в качестве ключа части открытого сообщения.

Познакомившись в трудами Тритемия, Белазо, Кордано и Альберти французский государственный деятель Блез де Виженер разработал собственный шифр, который получил название шифр Виженера . Суть шифра заключалась в том, что выбирался секретное слово, которое являлось ключом шифра. Это слово выписывалось под открытым сообщением периодически. Верхняя буква открытого текста соответствовала столбцу таблицы Тритемия, а нижняя буква ключа – строке таблицы Тритемия, буква, стоящая на пересечение строки и столбца являлась буквой шифртекста. Шифр Виженера представляет собой шифр замены. В последующем этот шифр был несколько упрощен для практического использования начальником первого в Германии государственного дешифровального отдела графом Гронсфельдом. Шифр Виженера и шифр Гронсфельда являются по сути дела родоначальниками широко используемого в настоящее время шифра гаммирования. Шифр Виженера использовался в различных вариантах вплоть до XIX века. Одним из наиболее известных модификаций шифра Виженера является шифр английского адмирала Бофора. Достоинство шифра Бофора заключается в том, что правило зашифрования сообщений и их расшифрования совпадают.

Широкое развитие криптографии в XVI веке было связано в развитие естественных наук, математики. В это же время в Европе появляются первые специальные органы дипломатической службы, которые занимались вопросами шифрования собственной корреспонденции и дешифрования перехваченной корреспонденции. XVII-XVIII века вошли в историю криптографии как эра «черных кабинетов». «Черные кабинеты» - специальный государственный орган по перехвату, перлюстрации и дешифрованию переписки, в первую очередь дипломатической. В штат «черных кабинетов» входили дешифровальщики, агенты по перехвату почты, писцы-копировальщики, переводчики, специалисты по подделке печатей, химики, специалисты по подделке почерков и т.д. Эти специалисты ценились весьма высоко и находились под особым покровительством властей, предательство очень сурово наказывалось.

В XIX веке появляются первые механические шифровальные устройства. Наиболее известными являются изобретения полковника американской армии Д. Уодсворта и английского инженера Ч. Уитстона. Устройство Уодсворта (1817 г.) представляло механический шифратор основными элементами которого были два шифровальных диска, на торце дного располагались буквы английского алфавита, а на торце второго буквы и цифры от 2 до 8. Литеры на втором диске били съемные, что позволяло менять алфавит шифрованного текста. Диски помещались в футляр с прорезанными в нем окнами. При вращении первого диска в верхнем окне выставлялась буква открытого сообщения. Диски были соединены шестеренчатой передачей, поэтому в нижнем окне появлялась соответствующая буква шифртекста. Устройство было снабжено специальной кнопкой для разъединения дисков. Это требовалось для того, чтобы обеспечивать установку устройства в заданное начальное положение. В устройстве Уодсворта просматриваются идеи Альберти, Тритемия, Виженера. Несмотря на то, что устройство было достаточно громоздким, к тому же в это время господствовали «ручные» шифры, которые не требовали специальных приспособлений, оно послужило толчком к развитию механических устройств для шифрования и расшифрования сообщений.

Интересное предложение по созданию механического устройства шифрования сделал Ч. Уитстон во второй половине XX века. В устройстве Уитстона просматриваются идеи Альберти, а также Уодсворта. Внешне устройство Уитстона напоминает диск Альберти, однако в нем реализована парадоксальная идея – алфавит открытого текста содержит большее количество знаков, чем шифрованного. Проблема неоднозначности в определении букв открытого сообщения решена Уитстоном блестяще. На рис. 1.4 представлен внешний вид устройства Уитстона.

Внешний диск, диск алфавита открытого текста, состоял из 27 знаков (26 букв английского алфавита и специального знака "+", означающего пробел). Внутренний алфавит определяет алфавит открытого текста и состоит из обычных 26 букв, расположенных в произвольном ключевом порядке. На той же оси, что и диски (алфавиты) устройства, соединенные шестернями размером 27×26 соответственно, расположены две стрелки, как в современных часах.

Рис. 1.4. Внешний вид устройства Ч. Уитстона


В начале шифрования большая (длинная) стрелка указывает на знак "+". Малая стрелка, связанная с большой резьбовой шестеренкой, ставилась в то же положение, т.е. "часы" показывали "12.00". Набор букв открытого текста производился поворотом большой стрелки по направлению движения часовой. После такого поворота малая стрелка указывает знак шифрованного текста. Таким образом, при полном повороте большого диска малый диск смещался на единицу по отношению к исходному взаимному состоянию двух дисков, что приводило к сдвиговому изменению алфавита шифрованного текста по отношению к алфавиту открытого текста. По окончании каждого слова большая стрелка становилась на знак "+", буква, на которую при этом указывала короткая стрелка, записывалась как знак шифрованного текста. Во избежание неоднозначности расшифрования, удвоение букв в открытом тексте не допускается. Повторную букву следует либо пропустить, либо ставить вместо нее какую-нибудь редкую букву, например Q. Например, слово THE APPLE при шифровании записывается как +THE+APLE+ или +THE+APQLE+.

Изобретение Уитстона, также как и Уодсворта, не нашло широкого применения. Однако судьба другого его предложения в области криптографии - шифра биграммной замены - сложилась лучше, хотя шифр несправедливо был назван именем друга изобретателя барона Плейфера. Вместе с тем, сам Плейфер вел себя весьма корректно: популяризируя изобретение, он всегда указывал имя автора – Уитстона, но история распорядилась иначе: шифру было присвоено имя не изобретателя, а популяризатора. Шифр Плейфера будет подробно рассмотрен в следующем разделе.

В начале XX века значительный вклад в развитие криптографии внес американец Г. Вернам. В 1917 году он, будучи сотрудником телеграфной компании, предложил идею автоматического шифрования телеграфных сообщений, суть которой заключается в следующем. Открытый текст представляется в коде Бодо (в виде пятизначных "импульсных комбинаций"). В этом коде, например, буква "А" имела вид (+ + - - -). На бумаге знак "+" означал отверстие, а знак "-" - его отсутствие. При считывании с ленты пятерка металлических щупов "опознавала" отверстия (при наличии отверстия щуп замыкал электрическую цепь). В линию связи посылались импульсы тока. Вернам предложил электромеханически покоординатно складировать импульсы знаков секретного текста с импульсами секретного ключа, представляющего из себя хаотический набор букв того же самого алфавита. Сложение, по современной терминологии, осуществлялось по модулю 2. Г. Вернам создал устройство, производящее операции шифрования автоматически, без участия шифровальщика, тем самым было положено начало так называемому "линейному шифрованию", когда процессы шифрования и передачи сообщения происходят одновременно. До той поры шифрование было предварительным, поэтому линейное шифрование существенно повышало оперативность связи. Шифр Вернама обладает исключительной криптографической стойкостью. В то же время очевиден и недостаток этой системы шифрования - ключ должна иметь ту же длину, что и открытый текст. Для расшифрования на приемном конце связи туда нужно передать (по тайным, защищенным каналам) ключ достаточной длины. При практической реализации это порождает проблемы, причем весьма существенные, что и предопределило скромное распространение шифров Вернама. Сам Вернам не был математиком-криптографом, тем не менее, он настаивал на том, что ключ шифра не должен повторяться при шифровании, и в этом, как показала история криптографии, он был прав. Его идеи породили новые подходы к надежной защите информации при передаче больших объемов сообщений.

Первая половина XX века стала «золотым веком» электромеханических шифровальных машин . Наибольшую известность получило семейство немецких электромеханических шифровальных машин Enigma. Различные модификации этой шифровальной машины использовались германскими войсками с конца 1923 года вплоть до 1945 года. В 1943 году союзникам по антигитлеровской коалиции удалось «взломать» машину Enigma, что сыграло большую роль в победе во Второй мировой войне. Для передачи наиболее секретных сообщений во время Второй мировой войне немцами использовалась шифровальная машина Lorenz. В американской армии с 1923 по 1943 год использовалась механическое устройство для шифрования М-94. В основу этого устройства положен диск Альберти. Для защиты дипломатической переписки в США использовалась машина Хеберна MarkII. Шведский криптограф Б. Хагелин разработал для французской секретной полиции шифровальное устройство СD-57, а для французских спецслужб – шифровальную машину М-209. Модификация этой машины использовалась также и американскими военными во Второй мировой войне. С 1939 года по 1952 год японцы использовали шифровальную машину для защиты дипломатической переписки под названием «Тип 97» и ее модификацию. В США эти машины получили красочное обозначение «Пурпурный код» и «Красный код». В СССР перед войной и в годы Великой Отечественной войны широко использовалась малогабаритная дисковая кодировочная машина К-37 «Кристалл». Только в 1940 году было выпущено 100 комплектов этой машины. После войны были подведены итоги эксплуатации К-37 и проводилась работа по ее дальнейшему совершенствованию.

Уже к началу 1930-х годов сформировались разделы математики (теория чисел, теория вероятностей и математическая статистика) являющиеся основой будущей науки – криптологии. Ключевой вехой в развитии криптографии является фундаментальный труд Клода Шеннона «Теория связи в секретных системах», написанный в форме секретного доклада в 1945 году и опубликованный в 1949 году . В этой работе впервые был показан подход к криптографии как к математической науке. Были сформулированы ее теоретические основы и введены понятия, с объяснения которых сегодня начинается изучение криптографии.

Развитие во второй половине XX века компьютерной техники и электроники сделало возможным использование более сложных шифров. В 1960-х годах появляются первые блочные шифры, обладающие большей криптостойкостью, чем электромеханические машины. В 1976 году в США принимается государственный стандарт шифрования – DES (Data Encryption Standart), являющийся первым в мире открыто опубликованным стандартом шифрования. На основе используемой в системе DES сети Хорста Фейстеля разработаны множество других криптосистем: российский стандарт ГОСТ 28147-89, криптосистема TEA (Tiny Encryption Algorithm), Twofish, IDEA (International Data Encryption Algorithm).

В 1975 году публикуется работа Уитфилда Диффи и Мартина Хеллмана «Новые направления в криптографии» . Данная работа открыла новую область криптографии, теперь называемую криптографией с открытым ключом. Хотя работа У. Диффи и М. Хеллмана создала большой теоретический задел для открытой криптографии, первой реальной криптосистемой с открытым ключом считают криптосистему RSA, названную по имени авторов - Рона Ривеста, Ади Шамира и Леонарда Адлемана. В настоящее время существует большое разнообразие криптосистем с открытым ключом, некоторые из которых являются национальными стандартами шифрования.

Таким образом, используя в качестве критерия периодизации технологические характеристики методов шифрования, историю криптографии можно разделить на следующие периоды.


  1. Первый период (приблизительно с 3 тысячелетия до н.э. до XV века) характеризуется господством моноалфавитных шифров.

  2. Второй период (с XV века по XX век) ознаменован введением многоалфавитных шифров.

  3. Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических шифровальных машин.

  4. Четвертый период (с середины до 70-х годов XX века) – период перехода к математической криптографии.

  5. Современный период (с конца 70-х годов XX века по настоящее время) характеризуется широким использованием криптографии частными лицами коммерческими организациями, что связано с развитием нового направления в криптографии – криптографии с открытым ключом.

1.3. Модели источников открытых текстов


Открытый текст, также как и криптограмма, представляет собой последовательность символов, взятых из конечного набора, называемого алфавитом . Элемент алфавита называется буквой , а число символов алфавита определяет его мощность
. Например, алфавит простых букв английского языка имеет мощность
, а алфавит английского языка, состоящий из прописных, строчных букв, цифр, а также знаков препинания и пробела имеет мощность
. Широко используемыми алфавитами, элементы которых есть двоичные векторы, являются коды ASCII и МТК-2.

Всякий открытый текст, записанный в некотором алфавите, имеет длину , равную числу букв в соответствующей записи. Последовательность соседних букв текста, при
называется -граммой , а при
- биграммой . Помимо исходного алфавита, часто рассматриваются производные из него алфавиты, представляющие наборы всевозможных -грамм исходного алфавита. Таким образом, каждый открытый текст характеризуется: набором используемых алфавитов; длиной текста; тематикой открытых текстов.

Модели открытых текстов разделяются на два класса: детерминированные и вероятностные .
1.3.1 Детерминированные модели

Источники открытых сообщений (ИОС) достаточно многообразны. В качестве ИОС рассматривать можно отдельного человека или группу людей, пункты телеграфной и телефонной сети и т.д. Каждый ИОС порождает тексты в соответствии с правилами грамматики используемого языка, что находит отражение и в статистических характеристиках открытых текстов. Всякий ИОС можно характеризовать разбиением множества -грамм на допустимые (встречающиеся в текстах) и запрещенные (не встречающиеся в текстах). Например, в русском языке буквы Ь и Ъ никогда не соседствуют друг с другом, и не следуют за гласными буквами. Разбиение множества -грамм на допустимые и запрещенные определяет детерминированную модель. В детерминированной модели открытый текст рассматривается как последовательность букв некоторого алфавита, не содержащий запрещенных -грамм. Необходимо отметить, что разделение на допустимые и запрещенные -граммы весьма условно в силу динамичности языка, его способности к развитию. Кроме этого, разделение на допустимые и запрещенные -граммы характеризует не только язык, но и отдельный источник сообщений.


1.3.2 Вероятностные модели

В вероятностных моделях ИОС рассматривается как источник случайных последовательностей. Пусть ИОС генерирует в заданном алфавите
текст конечной или бесконечной длины. При этом можно считать, что источник генерирует конечную или бесконечную последовательность случайных букв где для всех
и любого

,
.

Открытый текст такого источника является реализацией последовательности независимых испытаний в полиномиальной вероятностной схеме с числом исходов равным
. Множество исходов взаимно-однозначно соответствует множеству всех букв алфавита. Данная модель позволяет разделить буквы алфавита на классы высокой, средней и низкой частоты использования. Например, в русском языке редкими буквами являются Ф, Э, Щ, Ц, Х. В криптографии существует мнемоническое правило, которое позволяет запомнить десять наиболее часто встречаемых букв в русском языке – СЕНОВАЛИТР, причем буквы располагаются не в соответствии с частотой их использования. Необходимо заметить, что частота встречаемости букв в тексте зависит от тематики текста. Так для литературных произведений и научно-технических текстов значение частот встречаемости букв будет различным. Например, в математических текстах частота встречаемости буквы Ф будет выше, чем в литературных произведениях. Таким образом, частотная диаграмма является достаточно устойчивой характеристикой открытого текста.

Рассмотренная модель удобна для практического использования, в то же время некоторые свойства модели противоречат свойствам языка. В частности, согласной этой модели любая -грамма имеет ненулевую вероятность использования. Вышесказанное не позволяет применять данную модель для дешифрирования широкого класса криптосистем.

Стационарный источник независимых биграмм . Эта модель более громоздка, но точнее отражает свойства языка. Открытый текст такого ИОС является реализацией последовательности независимых испытаний в полиномиальной вероятностной схеме с числом исходов, равным
.Множество исходов соответствует множеству всех биграмм алфавита. Модель характеризуется равенством:

где для всех
и любых

С криптографией сегодня мы сталкиваемся на каждом шагу и это неудивительно. Широкое распространение портативных устройств с доступом к сети интернет заставило по-новому взглянуть на безопасность процесса передачи данных. В тоже время для многих криптография остается неким черным ящиком и если для простых пользователей это простительно, то недостаток знаний у технических специалистов способен привести к серьезным проблемам с безопасностью. Поэтому приглашаем всех желающих повысить свой уровень знаний в данном вопросе ознакомиться с нашим новым материалом.

"Какая криптография, зачем? Мне скрывать нечего!" - подобные утверждения часто можно слышать от пользователей если речь заходит о шифровании данных. К сожалению, во многом стараниями масс-медиа, криптография и шифрование у простого обывателя четко ассоциируется со шпионами, хакерами или иными представителями андеграунда. Однако, если поставить вопрос по-другому, хотят ли они, чтобы их переписка в социальных сетях, содержимое почтового ящика или учетные данные от банковского счета стали достоянием широкой общественности - то ответ будет сугубо отрицательным.

В современном мире применение криптографии вызвано не попытками скрыть от окружающих и государства какие-то неблаговидные моменты деятельности, а насущной необходимостью обеспечить безопасность данных передаваемых по общим каналам связи. Чем большую роль в нашей жизни стал играть интернет, тем большее количество мошенников и любителей легкой наживы стало появляться в нем, а размах и обороты киберпреступников давно уже заставляют воспринимать виртуальные угрозы со всей серьезностью.

Основная цель современной прикладной криптографии - это защита передаваемых данных от доступа к ним третьих лиц, либо возможности их подмены. Задача это не простая, поэтому и мы начнем с самого начала, сознательно упрощая модель до уровня, позволяющего понять азы без углубления с технические и математические подробности и не требующего наличия специальных знаний.

Итак, Алиса хочет отправить сообщение Бобу...

Симметричное шифрование

Итак, Алиса хочет отправить сообщение Бобу, но так, чтобы любопытная Ева не могла ознакомиться с его содержимым. Где и как будет передаваться сообщение - Алиса не знает, но знает, что Ева - особа крайне любопытная и при случае обязательно сунет нос в их с Бобом переписку.

Для того чтобы Ева не могла прочитать сообщение Алиса решает его зашифровать. Существует много способов сделать это, для примера мы возьмем довольно простой, но достаточно эффективный и широко применявшийся в прошлом способ - книжный шифр. Суть его состоит в том, что каждый символ в исходном сообщении заменяется на некую цифровую последовательность, скажем номер строки и номер символа в ней.

Привет Боб

в последовательность чисел:

3/9 1/8 5/1 7/1 2/2 6/3 4/3 1/5 1/13

Теперь данное сообщение можно смело передавать по незащищенным каналам, но ни Боб, ни Ева не могут прочитать его, так как не владеют ключом. Что такое ключ? В нашем случае это вполне определенная страница вполне определенной книги. Даже зная каким именно текстом зашифровано это сообщение Ева не сможет его прочитать, пока точно не будет знать издание, так как в другой книге на указанной странице, в указанных позициях могут оказаться совсем иные буквы.

Современная вычислительная техника, базируясь на достижениях высшей математики, способна совершать гораздо более сложные преобразования информации, но все современные алгоритмы базируются на тех же самых базовых принципах. Алгоритм может быть сколь угодно сложным, но он не представляет тайны, наоборот, даже лучше, если алгоритм открыт и общедоступен, это резко снижает встраивание в него механизмов, позволяющих расшифровать любое сообщение без знания ключа.

Ключ - основа секретности любого криптографического алгоритма и должен сохраняться в тайне.

В нашем случае, как несложно заметить, для шифрования и расшифровки информации используется один и тот же ключ, такое шифрование называется симметричным . К преимуществам симметричных алгоритмов можно отнести относительную простоту реализации и, как следствие, высокую скорость работы, но есть и недостатки, причем довольно существенные.

Итак, Алиса успешно зашифровала сообщение и отправила его Бобу. Но возникает новая сложность - каким образом передать Бобу ключ?

Послать второй экземпляр книги по почте? Сообщить название и тип издания по телефону? Ни один из этих способов не дает гарантии, что ключ получит именно Боб и что он не станет известен Еве. Ведь располагая секретным ключом Ева не только может читать переписку Алисы и Боба, но и общаться с Бобом от имени Алисы, а с Алисой от имени Боба.

Перебрав все возможные варианты Алиса и Боб не находят никакого иного способа, кроме как встретиться лично и передать ключ из рук в руки. Именно этот факт затрудняет массовое применение симметричного шифрования в информационных системах, мало кто захочет для работы с почтовым сервисом лично ехать в офис почтовой службы получать ключ.

Тем не менее симметричное шифрование широко применяется во многих отраслях, например, в банковском деле. Во многих системах дистанционного банковского обслуживания клиент (чаще всего корпоративный) должен лично явиться в банк и получить ключевой носитель для шифрования обмена данными с банком.

Еще один недостаток симметричного шифрования - это крайняя уязвимость всего канала связи от компрометации ключа. Потому как его утеря дает возможность читать не только текущие сообщения, но и расшифровать все ранее перехваченные. Поэтому, находясь в командировке, Боб сто раз подумает, следует ли отправлять сообщение Алисе из интернет кафе, так как он не может быть уверен, что компьютер с которого он будет это делать совершенно надежен и утечки ключа не произойдет. Чтобы избежать подобного сценария существуют токены с неизвлекаемым ключом, но их применение только удорожает систему и делает ее непригодной для массового применения.

Алгоритм Диффи-Хеллмана

Передача ключа по незащищенному каналу была большой проблемой криптографии в XX веке. Действительно, возникал некий, неразрешимый на первый взгляд, парадокс: для защиты открытого канала стороны должны прежде обменяться секретной информацией, которую нельзя передавать по открытым каналам. Однако в 1976 году Уитфилдом Диффи и Мартином Хеллманом, а также независимо от них Ральфом Мерклом был предложен алгоритм, получивший впоследствии название алгоритм (протокол) Диффи-Хеллмана .

В основу данного алгоритма были положены односторонние вычисления, не вдаваясь в подробности можно сказать, что это такие математические преобразования, при которых выполнить исходное вычисление достаточно просто, а вот обратное преобразование будет невозможным, либо займет значительное количество времени.

Одним из таких преобразований являются вычисления по модулю и именно они и легли в основу данного алгоритма. Чтобы понять его суть, проведем следующую аналогию: односторонние вычисления можно сравнить со смешиванием краски, сделать это легко, а вот разделить полученную смесь на исходные составляющие чрезвычайно трудно, практически невозможно. Этим мы и воспользуемся.

Итак, Алиса хочет послать сообщение Бобу...

Для того, чтобы выработать общий секрет, который впоследствии будет использоваться в качестве ключа шифрования, Алиса и Боб договариваются о некотором общем цвете. Пусть это будет один из оттенков желтого, данная информация является общедоступной и может быть известна Еве.

Затем каждый добавляет к одной части общей краски часть секретной, которая известна только Алисе или только Бобу, в итоге получается некий промежуточный цвет, который можно отправить по открытому каналу другой стороне. Даже перехватив оба этих цвета и располагая сведениями об общем цвете Ева в разумный промежуток времени не сможет быстро восстановить исходные цвета Алисы и Боба.

В случае с вычислениями по модулю это потребует практически полного перебора всех возможных исходных значений, что способно занять очень много времени, особенно если исходные данные 1024 и 2048-битные числа.

В итоге, получив от другой стороны промежуточный цвет, Алиса и Боб снова добавляют туда одну часть своего секретного цвета, в итоге у каждого из них получится оттенок, который в равных частях содержит оба секретных и общий цвета. Но при этом никакая секретная информация по открытому каналу не передается! Таким образом Алиса и Боб оказываются владельцами общего секрета, который они могут использовать для шифрования переписки не боясь, что ее содержимое станет известно Еве.

Обратите внимание, что алгоритм Диффи-Хеллмана не является алгоритмом шифрования, а представляет только протокол обмена ключами. Полученный таким образом ключ может быть использован для шифрования по любым доступным сторонам алгоритмам.

Кроме очевидных достоинств, алгоритм Диффи-Хеллмана имеет и существенные недостатки, один из которых - отсутствие взаимной аутентификации сторон, т.е. у Алисы нет уверенности, что промежуточный цвет прислал ей именно Боб и наоборот. Это делает возможными атаки типа "человек посередине" о которых мы поговорим позже.

Тем не менее достоинства алгоритма не менее очевидны, одним из которых является возможность любой стороне изменять собственный секрет без согласования с другой стороной и получая при этом каждый раз уникальный ключ шифрования. Эта особенность используется в настоящее время для обеспечения режима прямой секретности, когда стороны, выполнив предварительно взаимную аутентификацию, генерируют уникальный сессионный ключ для каждого нового сеанса связи. Таким образом, даже если ключ будет утерян, то это даст возможность расшифровать только текущий сеанс, но не ранее накопленные данные.

Асимметричное шифрование

Годом позже изобретения алгоритма Диффи-Хеллмана была представлена первая асимметричная система шифрования с открытым ключом - RSA. Можно сказать, что с этого момента произошло возникновение массовой криптографии в том виде, в котором мы ее знаем сейчас. Принципиальное отличие асимметричных систем состоит в создании ключевой пары: открытого и закрытого (приватного) ключей. Открытый ключ является общедоступным, но все что зашифровано с его помощью не может прочесть никто, кроме владельца закрытого ключа.

Вернемся к нашим героям.

Алиса генерирует ключевую пару и, поместив закрытый ключ в надежное хранилище, публикует открытый в виде сертификата. Сертификат, кроме собственно ключа, содержит ряд служебной информации, которая помогает определить личность владельца ключа, срок его действия и некоторые иные параметры. Никакой тайны данные сведения не составляют и наоборот являются общедоступными, в чем можно удостовериться, открыв для просмотра любой сертификат.

Боб, желая написать сообщение Алисе получает от нее сертификат и шифрует свое сообщение содержащимся в нем открытым ключом. Точно такой же сертификат может получить и Ева, но это не даст ей ничего, так как прочитать зашифрованное открытым ключом не может никто, кроме Алисы.

Чтобы отправить обратное сообщение можно воспользоваться аналогичной схемой: Алиса берет открытый ключ Боба... Но на практике данная схема не нашла своего применения по целому ряду причин. Одна из них - крайне низкая производительность асимметричных алгоритмов, вторая - необходимость формирования ключевой пары для всех участников переписки.

Предположим, что Алиса имеет интернет-магазин, а Боб простой покупатель в нем. При этом для Алисы не составит проблем сгенерировать ключевую пару, надежно защитить закрытый ключ и опубликовать открытый. Но как быть Бобу, который просто хочет что-то приобрести, а слова криптография и шифрование прочно ассоциируются у него со шпионскими романами?

К счастью все гораздо проще, получив от Алисы открытый ключ Боб формирует на основе некоторых данных общий секрет, который, зашифровав открытым ключом, направляет Алисе. В дальнейшем, согласовав один из симметричных алгоритмов, стороны переходят к симметричному шифрованию, используя общий секрет в качестве ключа.

Приведенный нами пример в упрощенной форме показывает, как работает алгоритм RSA, широко применяемый в настоящее время для обеспечения безопасных коммуникаций. Обратите внимание, что асимметричное шифрование используется только на начальном этапе, для защиты передачи сессионного ключа, в последующем стороны переходят на симметричное шифрование, которое имеет гораздо более высокую производительность при требуемом уровне надежности.

Но у данного подхода есть один существенный недостаток, так как сессионный ключ передается внутри зашифрованного канала, то в случае компрометации закрытого ключа Алисы любопытная Ева сможет расшифровать с его помощью все сессионные ключи, а затем прочитать всю перехваченную ею переписку. Чтобы этого избежать в настоящее время для формирования сессионного ключа используется алгоритм Диффи-Хеллмана, который позволяет создать общий секрет без передачи его по каналу связи.

Атака "Человек посередине"

Как мы уже отмечали, одним из краеугольных принципов криптографии является взаимное доверие и аутентификация сторон. Действительно, во всех наших примерах подразумевалось, что Алиса и Боб знают друг друга и могут убедиться в том, что на другом конце канала связи находится именно один из них. В реальной жизни мы не можем убедиться, что сервер на другом конце канала связи - это именно тот узел, который нам нужен, а это оставляет широкий простор для атак типа "человек посередине".

Встречаем нового персонажа - Мэллори. Если Ева была просто любопытной особой, то Мэллори не только любопытная, но и деятельная. Когда Боб хочет отправить сообщение Алисе он обращается к ней за открытым ключом, Мэллори перехватывает это сообщение и отправляет Бобу собственный открытый ключ. После чего она обращается к Алисе и получив ее сертификат также устанавливает защищенный канал связи с ней.

Таким образом и Алиса, и Боб думают, что общаются друг с другом, у обоих имеется защищенное соединение, однако на самом деле их канал полностью контролирует Мэллори. Получив сообщение от Боба, зашифрованное сеансовым ключом Мэллори-Боб, она расшифровывает его, при необходимости изменяет, и, зашифровав сеансовым ключом Алиса-Мэллори отправляет уже Алисе. Это уже гораздо более серьезная уязвимость, так как позволяет не только перехватывать, но и изменять передаваемую в таком канале информацию.

В данном случае мы показали классический пример атаки на RSA, но точно таким же образом Мэллори может осуществить атаку и на алгоритм Диффи-Хеллмана.

Кто уязвим перед такого рода атаками? Прежде всего пользователи самоподписанных сертификатов. Существует распространенный миф, что шифрование при помощи таких сертификатов ненадежно, однако это не так, по стойкости шифра самоподписанные сертификаты не отличаются от тех, которые выдаются за деньги, но есть одна большая разница. Если мы не знаем, кто именно выпустил данный сертификат, то рискуем вместо сертификата Алисы принять сертификат от Мэллори со всеми вытекающими.

Вторая группа риска - системные администраторы, которые в целях контроля перехватывают защищенный трафик из внутренней сети. В этом случае шлюз выступает в роли Мэллори, так как отдает клиенту собственный ключ (которому клиент доверяет) и сам осуществляет соединение с запрошенным узлом, расшифровывая и контролируя проходящий через него трафик.

Если шлюз настроен таким образом, что будет подавлять сообщения об ошибках сертификата, то появление настоящей Мэллори может пройти незамеченным. Это может привести к тому, что, попав на фишинговый сайт клиент не заметит подвоха и отдаст свои учетные данные мошенникам, так как внешне все будет выглядеть пристойно, потому что соединение от клиента до шлюза надежно, о чем и будет сообщать браузер, показывая на странице зеленый замочек.

Удостоверяющий центр

Итак, пример с Мэллори нам показал, что одной только криптографии недостаточно для надежной защиты канала связи, так как не менее важно знать кто именно находится на другом его конце и тот ли он, за кого себя выдает.

Для этого есть несколько способов. Самый простой из них, когда, получив сертификат Алисы, Боб может лично ей позвонить и спросить некую контрольную сумму, скажем, SHA-хэш (отпечаток ключа), данные алгоритмы построены таким образом, что даже малейшее изменение исходного значения дает принципиально иной результат для функции хэширования.

Такой подход применяется, например, при установлении соединений через SSH, при первой попытке подключения в обязательном порядке сообщается хэш используемого открытого ключа, который администратор может сравнить с известным ему значением (либо спросить его лично у администратора сервера).

В дальнейшем значение хэша кешируется и при последующих соединениях отпечаток ключа сервера сравнивается со значением из кеша. Поэтому получив повторно подобный запрос с иным значением хеша следует глубоко задуматься и незамедлительно начать расследование, так как изменение отпечатка говорит о том, что вы подключаетесь к иному узлу (либо администратор переустановил ОС или вручную перегенерировал ключи).

Понятно, что такой способ подходит только для служебных соединений, когда количество лиц, использующих его ограничено, все они знают друг друга лично и могут быстро удостовериться в подлинности отпечатка.

Также Алиса может выпустить и передать Бобу сертификат своего удостоверяющего центра (CA, Certification authority ), который содержит открытый ключ, позволяющий проверить подлинность любого выпущенного Алисой при помощи данного удостоверяющего центра сертификата. Здесь возникает еще один интересный момент. Сертификат CA не содержит секретных сведений, но его не следует передавать по незащищенным каналам, а также следует хранить его так, чтобы избежать доступа к нему третьих лиц.

Почему так? Весь вопрос в доверии, если Боб доверяет Алисе, то он доверяет ее УЦ, а установив сертификат УЦ он автоматически будет доверять любому выпущенному Алисой сертификату. Поэтому если Мэллори подменит сертификат "по дороге" или сделает это позже, в незащищенном хранилище, то Боб станет автоматически доверять сертификатам Мэллори, думая, что это сертификаты Алисы.

Однако данная схема вполне работоспособна, например, в пределах организации, когда выпуском и распространением сертификатов занимается доверенный узел и все сотрудники организации автоматически доверяют сертификатам выпущенным данным УЦ. При этом снова все упирается в доверие, в случае возникновения каких-либо сомнений сотрудник всегда может связаться лично с администратором и проверить с его помощью подлинность ключа.

А как быть если стороны не знают друг друга? Скажем Боб хочет приобрести что-то в интернет магазине Алисы, про которую он читал много хороших отзывов, но он не знает Алису лично и не имеет возможности с ней встретиться, чтобы проверить подлинность сертификата. Да и Алиса вряд ли будет иметь столько свободного времени, чтобы иметь возможность лично знакомиться с каждым своим покупателем.

Как же быть? Выход прост: потребуется третья сторона, чей авторитет неоспорим и которая может выступить гарантом подлинности, скажем, нотариус.

Таким образом Алиса должна лично посетить нотариуса Трента, который сначала проверит личность Алисы, а затем заверит ее сертификат своей подписью. Получив такой сертификат Боб всегда может связаться с Трентом и получить от него образец подписи, который он может сравнить с тем, что на сертификате. Если подписи совпали, то данный сертификат действительно принадлежит Алисе, чему порукой авторитет Трента.

Если сертификат не содержит подписи Трента, то Боб не может проверить, принадлежит данный сертификат Алисе, либо это проделки Мэллори и поэтому, при невозможности точно проверить подлинность, такие (самоподписанные) сертификаты следует отклонять.

Может ли Мэллори подписать свой сертификат у Трента? Вполне, но она сможет подписать его только от своего имени и представиться Алисой у нее уже не получится.

В современной инфраструктуре открытых ключей (PKI, Public Key Infrastructure ) роль нотариуса Трента исполняют доверенные корневые центры сертификации, сертификаты которых поставляются в составе операционной системы и располагаются в защищенном хранилище.

Это означает, что система будет автоматически доверять сертификатам, которые имеют подписи данных удостоверяющих центров, но что означает это доверие? Здесь мы вплотную подошли к тому, какие бываю типы сертификатов и что они удостоверяют. Выделяют три основных типа сертификатов, которые различаются уровнем удостоверения владельца и, соответственно, стоимостью.

DV - Domain Validation - самый простой и недорогой вид сертификата, который можно получить очень быстро, а с некоторых пор и бесплатно. Данный вид сертификата всего лишь удостоверяет факт владения доменом, т.е. для его получения необходимо выполнить некоторые действия доступные только владельцу домена, например, разместить файл в определенном месте на сайте или ввести код отправленный на почтовый ящик, указанный во WHOIS.

Соединение с сайтом, использующим DV-сертификат выглядит следующим образом, а в поле Субъект сертификата находится только доменное имя:

О чем нам говорит этот сертификат? О том, что вы действительно связались с сайтом сайт и передаваемые между вами данные недоступны третьим лицам. Однако он ничего не говорит о том, что владельцы данного сайта существуют или являются теми, за кого себя выдают. Само по себе наличие зеленого замка и защищенного соединения еще никак не обозначает, что данный сайт безопасен или не является мошенническим, единственное в чем вы можете быть уверены - что ваш канал связи защищен.

Проще говоря, если Боб знает, что данный сайт принадлежит Алисе, то он может спокойно сообщать ему конфиденциальную информацию, а если он видит данный сайт в первый раз, то наличие защищенного соединения никоим образом доверия не добавит.

Несмотря на это, DV - самый распространенный и используемый в сети вид сертификатов. Он идеально подходит тем сайтам, которым не нужно удостоверять личность владельца, а всего лишь надо предоставить своим пользователям защищенный канал.

OV - Organization Validation - для получения данного сертификата требуется не только подтвердить факт владения доменом, но и факт существования компании владельца или личность физического лица. Это позволяет обеспечить дополнительный уровень доверия для сайтов, осуществляющих бизнес в сети.

Внешне соединение с таким сайтом ничем не отличается от сайта с DV-сертификатом, но поле Субъект содержит дополнительные сведения о владельце.

Данные сертификаты широко используются в бизнес-целях, когда требуется не только подтвердить факт безопасного соединения с данным ресурсом, но и факт его принадлежности определенной компании или физлицу. Так впервые попав на новый сайт Алисы и проверив поле субъект в OV-сертификате Боб может быть уверен, что принадлежит данный сайт именно Алисе, а не Еве или Мэллори.

Но опять-таки, наличие OV-сертификата никоим образом не способно оградить вас от мошенничества. Стоят такие сертификаты недорого, и никто не мешает фирме-однодневке приобрести его для использования в неблаговидных целях. В общем вопрос доверия и здесь остается открытым, а здоровая бдительность не должна притупляться фактом наличия OV-сертификата.

EV - Extended Validation - сертификат с расширенной проверкой, выдается только компаниям и только после ряда дополнительных проверок. В частности, проверяется не только факт существования компании, но и соответствие указанных сведений действительности, например, проверяется наличие компании по указанному адресу, принадлежность компании указанных телефонов и возможность по ним связаться и т.д., и т.п.

Соединение с сайтом владеющим таким сертификатом визуально отличается крупным указанием компании владельца прямо в адресной строке браузера, а также сообщением, что подлинность компании подтверждена. В поле Субъект также присутствуют дополнительные сведения.

Данный тип сертификата предусматривает гораздо более высокий уровень доверия. Например, Боб теперь может быть уверен, что данный сайт не просто принадлежит компании Алисы, но и если он пройдет по указанному в уставных документах адресу, то там он с большой вероятностью обнаружит указанную компанию и Алису собственной персоной.

Однако не следует впадать в эйфорию и читать EV-сертификат залогом добросовестности компании или высокого качества ее работы, он всего лишь подтверждает, что компания не только существует, но и ведет свою деятельность по указанным координатам, ни больше, ни меньше. Так наличие у Почты России DV-сертификата нисколько не уменьшит уровень доверия к ним, ровно как наличие у ООО "Рога и копыта" сертификата уровня EV доверия к ним не повысит.

В заключение хочется сказать, что мы надеемся, что данный материал не только поможет вам разобраться в том, как работает криптография и почему соединение с зеленым замочком можно считать безопасным, но и заставит по-новому посмотреть на вопросы безопасности и доверия в сети, не ограничиваясь сугубо техническими аспектами. Ведь криптография - это всего лишь инструмент, который можно использовать как в благих целях, так и в неприглядных.

  • Теги:

Please enable JavaScript to view the

В книге впервые на русском языке дается систематическое изложение научных основ криптографии от простейших примеров и основных понятий до современных криптографических конструкций. Понимание принципов криптографии стало для многих потребностью в связи с широким распространением криптографических средств обеспечения информационной безопасности. Поэтому книга может быть полезна массовому читателю.
Книга рассчитана на студентов-математиков и специалистов по информационной безопасности.

Предмет криптографии.
Что же является предметом криптографии? Для ответа на этот вопрос вернемся к задаче ТП, чтобы уточнить ситуацию и используемые понятия.

Прежде всего заметим, что эта задача возникает только для информации, которая нуждается в защите. Обычно в таких случаях говорят, что информация содержит тайну или является защищаемой, приватной, конфиденциальной, секретной. Для наиболее типичных, часто встречающихся ситуаций такого типа введены даже специальные понятия:
- государственная тайна;
- военная тайна;
- коммерческая тайна;
- юридическая тайна;
- врачебная тайна и т. д.

Далее мы будем говорить о защищаемой информации, имея в виду следующие признаки такой информации:
- имеется какой-то определенный круг законных пользователей, которые имеют право владеть этой информацией;
- имеются незаконные пользователи, которые стремятся овладеть этой информацией с тем. чтобы обратить ее себе во благо, а законным пользователям во вред.

Для простоты мы вначале ограничимся рассмотрением только одной угрозы - угрозы разглашения информации. Существуют и другие угрозы для защищаемой информации со стороны незаконных пользователей: подмена, имитация и др. О них мы поговорим ниже.

Оглавление
Предисловия
Глава 1. Основные понятия криптографии
§1. Введение
§2. Предмет криптографии
§3. Математические основы
§4. Новые направления
§5. Заключение
Глава 2. Криптография и теория сложности
§1. Введение
§2. Криптография и гипотеза Р = NP
§3. Односторонние функции
§4. Псевдослучайные генераторы
§5. Доказательства с нулевым разглашением
Глава 3. Криптографические протоколы
§1. Введение
§2. Целостность. Протоколы аутентификации и электронной подписи
§3. Неотслеживаемость. Электронные деньги
§4. Протоколы типа «подбрасывание монеты по телефону»
§5. Еще раз о разделении секрета
§6. Поиграем в «кубики». Протоколы голосования
§7. За пределами стандартных предположений. Конфиденциальная передача сообщений
§8. Вместо заключения
Глава 4. Алгоритмические проблемы теории чисел
§1. Введение
§2. Система шифрования RSA
§3. Сложность теоретико-числовых алгоритмов
§4. Как отличить составное число от простого
§5. Как строить большие простые числа
§6. Как проверить большое число на простоту
§7. Как раскладывают составные числа на множители
§8. Дискретное логарифмирование
§9. Заключение
Глава 5. Математика разделения секрета
§1. Введение
§2. Разделение секрета для произвольных структур доступа
§3. Линейное разделение секрета
§4. Идеальное разделение секрета и матроиды
Глава 6. Компьютер и криптография
§1. Вместо введения
§2. Немного теории
§3. Как зашифровать файл?
§4. Поучимся на чужих ошибках
§5. Вместо заключения
Глава 7. Олимпиады по криптографии для школьников
§1. Введение
§2. Шифры замены
§3. Шифры перестановки
§4. Многоалфавитные шифры замены с периодическим ключом
§5. Условия задач олимпиад по математике и криптографии
§6. Указания и решения
Приложение А. Отрывок из статьи К. Шеннона «Теория связи в секретных системах»
Приложение Б. Аннотированный список рекомендованной литературы
Приложение В. Словарь криптографических терминов
Алфавитный указатель русскоязычных терминов
Алфавитный указатель англоязычных терминов.

Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Введение в криптографию, Ященко В.В., 2012 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

Введение в криптографию

При передаче или хранении данных часто возникает задача защиты информации от нежелательного прочтения. Чаще всего в этом случае используют один из методов криптографии (от греческого тайнопись). В отличие от большинства терминов компьютерной лексики это слово не английского, а греческого происхождения.

История криптографии насчитывает тысячи лет, и многие основополагающие принципы современной криптографии известны, возможно, с доисторических времен, однако, существенный прогресс в теории шифрования был достигнут лишь относительно недавно, в связи с разработкой современной теории информации.

Практически все методы криптографии сводятся к преобразованию данных в набор из конечного количества символов и осуществлению над этими символами двух основных операций: подстановки и перестановки. Подстановка состоит в замене одних символов на другие. Перестановка состоит в изменении порядка символов. В качестве символов при этом могут выступать различные элементы сообщения – так, при шифровании сообщений на естественных языках подстановке и перестановке могут подвергаться как отдельные буквы, так и слова или даже целые предложения (как, например, в аллегорических изложениях магических и священных текстов). В современных алгоритмах этим операциям чаще всего подвергаются блоки последовательных битов. Некоторые методики можно описать как осуществление операции подстановки над полным сообщением. Подстановки и перестановки производятся по определенным правилам. При этом надежда возлагается на то, что эти правила и/или используемые в них параметры известны только автору и получателю шифрованного сообщения и неизвестны посторонним лицам. В докомпьютерную эру старались засекретить обе составляющие процесса шифрования. Сейчас для шифрования, как правило, используют стандартные алгоритмы, секретность же сообщения достигается путем засекречивания используемого алгоритмом параметра, ключа (key). Прочтение секретного сообщения посторонним лицом, теоретически, может быть осуществлено двумя способами: похищением ключевого значения либо его угадыванием путем анализа перехваченной шифровки. Если первое мероприятие может быть предотвращено только физической и организационной защитой, то возможность второго определяется используемым алгоритмом. Ниже мы будем называть процесс анализа шифровки взломом шифра, а человека, осуществляющего этот процесс, – взломщиком. По-научному эта деятельность называется более нейтрально – криптоанализ. К примеру, сообщение на естественном языке, зашифрованное подстановкой отдельных букв, уязвимо для частотного анализа: основываясь на том факте, что различные буквы встречаются в текстах с разной частотой, взломщик легко – и с весьма высокой достоверностью – может восстановить таблицу подстановки. Существуют и другие примеры неудачных алгоритмов, которые сохраняют в неприкосновенности те или иные присутствовавшие в сообщении автокорреляции – каждый такой параметр можно использовать как основу для восстановления текста сообщения или обнаружения ключа.

Устойчивость шифра к поиску автокорреляций в сообщении называется криптостойкостью алгоритма. Даже при использовании удачных в этом смысле алгоритмов, если взломщик знает, что исходные (нешифрованные) данные удовлетворяют тому или иному требованию, например, содержат определенное слово или снабжены избыточным кодом, он может произвести полный перебор пространства ключей: перебирать все значения ключа, допускаемые алгоритмом, пока не будет получено удовлетворяющее требованию сообщение. При использовании ключей достаточно большой разрядности такая атака оказывается чрезмерно дорогой, однако прогресс вычислительной техники постоянно сдвигает границу "достаточности" все дальше и дальше. Так, сеть распределенных вычислений Bovine в 1998 году взломала сообщение, зашифрованное алгоритмом DES с 56-разрядным ключом за 56 часов работы. Простым и эффективным способом борьбы с такой атакой является расширение пространства ключей. Увеличение ключа на один бит приводит к увеличению пространства вдвое – таким образом, линейный рост размера ключа обеспечивает экспоненциальный рост стоимости перебора. Некоторые алгоритмы шифрования не зависят от разрядности используемого ключа – в этом случае расширение достигается очевидным способом. Если же в алгоритме присутствует зависимость от разрядности, расширить пространство можно, всего лишь применив к сообщению несколько разных преобразований, в том числе и одним алгоритмом, но с разными ключами. Еще один способ существенно усложнить работу взломщику – это упаковка сообщения перед шифрованием и/или дополнение его случайными битами. Важно подчеркнуть, впрочем, что количество двоичных разрядов ключа является лишь оценкой объема пространства ключей сверху, и во многих ситуациях эта оценка завышена. Некоторые алгоритмы в силу своей природы могут использовать только ключи, удовлетворяющие определенному условию – например, RSA использует простые числа. Это резко сужает объем работы по перебору, поэтому для обеспечения сопоставимой криптостойкости разрядность ключа RSA должна быть намного больше, чем у алгоритмов, допускающих произвольные ключи. Низкая криптостойкость может быть обусловлена. не только алгоритмом шифрования, но и процедурой выбора ключа: если ключ может принимать любые двоичные значения заданной разрядности, но реально для его выбора используется страдающий неоднородностью генератор псевдослучайных чисел, мы можем значительно сократить объем пространства, которое реально должен будет перебрать взломщик наших сообщений. Еще хуже ситуация, когда в качестве ключа используются легко запоминаемые слова естественного языка: в этом случае реальный объем пространства ключей даже довольно большой разрядности может измеряться всего лишь несколькими тысячами различных значений.

Современные алгоритмы шифрования делятся на два основных класса: с секретным и с публичным ключом.

Алгоритмы с секретным ключом, в свою очередь, делятся на потоковые (stream) и блочные (block). Потоковые алгоритмы обычно используют подстановку символов без их перестановки. Повышение криптостойкости при этом достигается за счет того, что правила подстановки зависят не только от самого заменяемого символа, но и от его позиции в потоке. Примером простейшего – и в то же время абсолютно не поддающегося взлому – потокового алгоритма является система Вернама или одноразовый блокнот. Система Вернама основана на ключе, размер которого равен размеру сообщения или превосходит его. При передаче двоичных данных подстановка осуществляется сложением по модулю 2 (операцией исключающего или) соответствующих битов ключа и сообщения.

Если ключ порожден надежным генератором случайных чисел (например, правильно настроенным оцифровщиком теплового шума), никакая информация об автокорреляциях в исходном тексте сообщения взломщику не поможет: перебирая полное пространство ключей, взломщик вынужден будет проверить все сообщения, совпадающие по количеству символов с исходным, в том числе и все сообщения, удовлетворяющие предполагаемому автокорреляционному соотношению. Это преимущество теряется, если один и тот же ключ будет использован для кодирования нескольких сообщений: взломщик, перехвативший их все, сможет использовать эти сообщения и предположения об их содержимом при попытках отфильтровать ключ от полезной информации – отсюда и второе название алгоритма. Применение системы Вернама, таким образом, сопряжено с дорогостоящей генерацией и, главное, транспортировкой ключей огромной длины, и поэтому она используется лишь в системах экстренной правительственной и военной связи.

Более практичным оказалось применение в качестве ключа псевдослучайных последовательностей, порождаемых детерминированными алгоритмами. В промежутке между первой и второй мировыми войнами широкое распространение получили шифровальные машины, основанные на механических генераторах таких последовательностей. Чаще всего использовались сочетания, получаемые при вращении колес с взаимно простыми количествами зубцов. Основной опасностью при использовании таких методов шифрования является возможность определить текущую точку последовательности – узнав ее (например, по косвенным признакам догадавшись, что в данной точке сообщения должно быть такое-то слово, и восстановив использовавшийся при ее шифровании элемент ключа), взломщик может продолжить генерацию с той же точки и расшифровать весь дальнейший поток.

В системах цифровой связи широкое применение получили блочные алгоритмы, выполняющие над блоками данных фиксированной длины последовательности – иногда довольно сложные – перестановок, подстановок и других операций, чаще всего двоичных сложений данных с ключом по какому-либо модулю. В операциях используются компоненты ключевого слова относительно небольшой разрядности. Например, широко применяемый блочный алгоритм DES шифрует 64-битные блоки данных 56-битным ключом. Для современной вычислительной техники полный перебор 56-битного пространства возможен, поэтому сейчас все большее распространение получают алгоритмы с большей разрядностью ключа – Blowfish, IDEAL и др.

Шифры с открытым ключом называются также двухключевыми. Если в алгоритмах со скрытым ключом для кодирования и декодирования сообщений используется один и тот же ключ, то здесь используются два ключа: публичный и приватный. Для прочтения сообщения, закодированного публичным ключом, необходим приватный, и наоборот. Помимо обычных соображений криптостойкости, к таким алгоритмам предъявляется дополнительное требование: невозможность восстановления приватного ключа по публичному иначе как полным перебором пространства ключей. Двухключевые схемы шифрования намного сложнее в разработке, чем схемы с секретным ключом: требуется найти преобразование, не поддающееся обращению при помощи применявшегося в нем публичного ключа, но такое, чтобы с применением приватного ключа его все-таки можно было обратить. Известные криптоустойчивые схемы основаны на произведениях простых чисел большой разрядности, дискретных логарифмах и эллиптических кривых. Наиболее широкое применение получил разработанный в 1977 г. алгоритм RSA. Известные двухключевые алгоритмы требуют соответствия ключей весьма специфическим требованиям, поэтому для достижения криптостойкости, сопоставимой с блочными алгоритмами, необходимо использовать ключи намного большей разрядности. Так, снятые в 2000 году ограничения Министерства торговли США устанавливали ограничения разрядности ключа, который мог использоваться в экспортируемом за пределы США программном обеспечении: для схем с секретным ключом устанавливался предел, равный 48 битам, а для схем с открытым – 480. Использование ключей большой разрядности требует значительных вычислительных затрат, поэтому двухключевые схемы чаще всего применяются в сочетании с обычными: обладатель публичного ключа генерирует случайную последовательность битов, кодирует ее и отправляет обладателю приватного ключа. Затем эта последовательность используется в качестве секретного ключа для шифрования данных. При установлении двустороннего соединения стороны могут сначала обменяться своими публичными ключами, а затем использовать их для установления двух разных секретных ключей, используемых для шифрования данных, передаваемых в разных направлениях. Такая схема делает практичной частую смену секретных ключей: так, в протоколе SSH ключ генерируется на каждую сессию, в протоколе виртуальных приватных сетей IPSEC время жизни ключа ограничено восемью часами. Еще более широкое применение двухключевые схемы нашли в области аутентификации и электронной подписи. Электронная подпись представляет собой контрольную сумму сообщения, зашифрованную приватным ключом отправителя. Каждый обладатель соответствующего публичного ключа может проверить аутентичность подписи и целостность сообщения. Это может использоваться для проверки аутентичности как сообщения, так и самого отправителя. Использование в качестве контрольной суммы обычного CRC невозможно, потому что генерация сообщения с заданным CRC не представляет вычислительной сложности. Для применения в электронной подписи были разработаны специальные алгоритмы вычисления контрольных сумм, затрудняющие подбор сообщения с требуемой суммой.

Поскольку программа представляет из себя набор машинных кодов, требуется рассмотреть процедуру ее загрузки в оперативную память компьютера (многие из обсуждаемых далее концепций, впрочем, в известной мере применимы и к прошивке программы в ПЗУ).

Для начала предположим, что программа была заранее собрана в некий единый самодостаточный объект, называемый загрузочным или загружаемым модулем. В ряде операционных систем программа собирается в момент загрузки из большого числа отдельных модулей, содержащих ссылки друг на друга.

Для того чтобы не путаться, давайте будем называть программой ту часть загрузочного модуля, которая содержит исполняемый код. Результат загрузки программы в память будем называть процессом или, если нам надо отличать загруженную программу от процесса ее исполнения, образом процесса. К образу процесса иногда причисляют не только код и данные процесса (подвергнутые преобразованию как в процессе загрузки, так и в процессе работы программы), но и системные структуры данных, связанные с этим процессом. В старой литературе процесс часто называют задачей.

В системах с виртуальной памятью каждому процессу обычно выделяется свое адресное пространство, поэтому мы иногда будем употреблять термин процесс и в этом смысле. Впрочем, во многих системах значительная часть адресных пространств разных процессов перекрывается – это используется для реализации разделяемого кода и данных. В рамках одного процесса может исполняться один или несколько потоков или нитей управления.

Некоторые системы предоставляют и более крупные структурные единицы, чем процесс. Например, в системах семейства Unix существуют группы процессов, которые используются для реализации логического объединения процессов в задания (job). Ряд систем имеют также понятие сессии – совокупности всех заданий, которые пользователь запустил в рамках одного сеанса работы. Впрочем, соответствующие концепции часто плохо определены, а их смысл сильно меняется от одной ОС к другой.

В более старых системах и в старой литературе называют результат загрузки задачей, а процессами – отдельные нити управления. Однако в наиболее распространенных ныне ОС семейств Unix и Win32, принято задачу называть процессом, а процесс – нитью (tread).

Книги. Скачать книги DJVU, PDF бесплатно. Бесплатная электронная библиотека
В.В. Ященко, Введение в криптографию

Вы можете (программа отметит желтым цветом)
Вы можете посмотреть список книг по высшей математике с сортировкой по алфавиту.
Вы можете посмотреть список книг по высшей физике с сортировкой по алфавиту.

• Бесплатно скачать книгу , объем 1.69 Мб, формат.djvu
Издание второе под ред. Ященко В.В., сентябрь 1999 года

Уважаемые дамы и господа!! Для того, чтобы без "глюков" скачать файлы электронных публикаций, нажмите на подчеркнутую ссылку с файлом ПРАВОЙ кнопкой мыши , выберите команду "Save target as ..." ("Сохранить объект как..." ) и сохраните файл электронной публикации на локальный компьютер. Электронные публикации обычно представлены в форматах Adobe PDF и DJVU.

Глава 1. Основные понятия криптографии
1. Введение
2. Предмет криптографии
3. Математические основы
4. Новые направления
5. Заключение

Глава 2. Криптография и теория сложности
1. Введение
2. Криптография и гипотеза
3. Односторонние функции
4. Псевдослучайные генераторы
5. Доказательства с нулевым разглашением

Глава 3. Криптографические протоколы
1. Введение
2. Целостность. Протоколы аутентификации и электронной подписи
3. Неотслеживаемость. Электронные деньги
4. Протоколы типа "подбрасывание монеты по телефону"
5. Еще раз о разделении секрета
6. Поиграем в "кубнки". Протоколы голосования
7. За пределами стандартных предположений. Конфиденциальная передача сообщений
8. Вместо заключения

Глава 4. Алгоритмические проблемы теории чисел
1. Введение
2. Система шифрования RSA
3. Сложность теоретико-числовых алгоритмов
4. Как отличить составное число от простого
5. Как строить большие простые числа
6. Как проверить большое число на простоту
7. Как раскладывают составные числа на множители
8. Дискретное логарифмирование
9. Заключение

Глава 5. Математика разделения секрета
1. Введение
2. Разделение секрета для произвольных структур доступа
3. Линейное разделение секрета
4. Идеальное разделение секрета и матроиды

Глава 6. Компьютер и криптография
1. Вместо введения
2. Немного теории
3. Как зашифровать файл?
4. Поучимся на чужих ошибках
5. Вместо заключения

Глава 7. Олимпиады по криптографии для школьников
1. Введение
2. Шифры замены
3. Шифры перестановки
4. Многоалфавитные шифры замены с периодическим ключом
5. Условия задач олимпиад по математике и криптографии
6. Указания и решения

Приложение: отрывок из статьи К. Шеннона "Теория связи в секретных системах"

Краткая аннотация книги

Под общ. ред. В.В.Ященко. Авторский коллектив: В. В. Ященко (редактор, глава 1), Н. П. Варновский (главы 2, 3), Ю. В. Нестеренко (глава 4), Г. А. Кабатянский (глава 5), П. Н. Девянин, В. Г. Проскурин, А. В. Черемушкин (глава 6), П. А. Гырдымов, А. Ю. Зубов, А. В. Зязин, В. Н. Овчинников (глава 7).

В книге впервые на русском языке дается систематическое изложение научных основ криптографии от простейших примеров и основных понятий до современных криптографических конструкций. Понимание принципов криптографии стало для многих потребностью в связи с широким распространением криптографических средств обеспечения информационной безопасности. Поэтому книга может быть полезна массовому читателю. Книга рассчитана на студентов-математиков и специалистов по информационной безопасности.

Криптография - наука о шифрах - долгое время была засекречена, так как применялась, в основном, для защиты государственных и военных секретов. В настоящее время методы и средства криптографии используются для обеспечения информационной безопасности не только государства, но и частных лиц, и организаций. Дело здесь совсем не обязательно в секретах. Слишком много различных сведений "гуляет" по всему свету в цифровом виде. И над этими сведениями "висят" угрозы недружественного ознакомления, накопления, подмены, фальсификации и т. п. Наиболее надежные методы защиты от таких угроз дает именно криптография.

Пока криптографические алгоритмы для рядового потребителя - тайна за семью печатями, хотя многим уже приходилось пользоваться некоторыми криптографическими средствами: шифрование электронной почты, интеллектуальные банковские карточки и др. Естественно, что при этом основной вопрос для пользователя - обеспечивает ли данное криптографическое средство надежную защиту. Но даже правильно Сформулировать этот элементарный вопрос непросто. От какого противника защищаемся? Какие возможности у этого противника? Какие цели он может преследовать? Как измерять надежность защиты? Список таких вопросов можно продолжить. Для ответа на них пользователю необходимы знания основных понятий криптографии.

Популярное изложение научных основ криптографии (речь идет только о "негосударственной" криптографии; разделы криптографии, связанные с государственной безопасностью, должны оставаться секретными) - цель настоящей книги. Ее можно использовать и в качестве учебного пособия. На русском языке аналогичных книг пока нет. Материалы ряда глав публиковались авторами ранее в других изданиях (глава 1 - в книге С. А. Дориченко, В. В. Ященко, "25 этюдов о шифрах", М.: ТЕИС, 1994; главы 1,2,4,5 - в журнале "Математическое просвещение", третья серия, выпуск 2, М.: МЦНМО, 1998; глава 7 - в газете "Информатика" (еженедельное приложение к газете "Первое сентября"), N 4, январь 1998). При подготовке настоящего издания эти материалы были переработаны и дополнены. Изложение материала рассчитано на читателя с математическим складом ума.

В основном главы не зависят друг от друга (это достигнуто за счет некоторых повторов) и их можно читать в произвольном порядке. Главу 1 - вводную - рекомендуется прочитать всем, поскольку в ней на популярном уровне разъясняются все основные понятия современной криптографии: шифр, ключ, стойкость, электронная цифровая подпись, криптографический протокол и др. В других главах часть материала повторяется, но уже более углубленно. В главах 2, 3, 4, 5 используются некоторые сведения из высшей математики, известные ученикам математических классов и студентам. Глава 6 ориентирована на знатоков компьютерных технологий. Глава 7 содержит материалы олимпиад по криптографии для школьников и поэтому для ее чтения никаких знаний, выходящих за пределы школьной программы, не требуется.

Предупреждение: криптографические средства и программные продукты, упоминаемые в книге, используются только для иллюстрации общих криптографических идей; авторы не ставили своей целью давать оценки или сравнивать имеющиеся на рынке криптографические средства.

Криптография была поставлена на научную основу во многом благодаря работам выдающегося американского ученого Клода Шеннона. Его доклад "Математическая теория криптографии" был подготовлен в секретном варианте в 1945 г., рассекречен и опубликован в 1948 г., переведен на русский язык в 1963 г. Поскольку "Работы по теории информации и кибернетике" (1963 г.) К. Шеннона стали библиографической редкостью, мы включили в приложение основную часть статьи К. Шеннона "Теория связи в секретных системах". Эту основополагающую работу рекомендуется прочитать всем интересующимся криптографией.

Для профессионального понимания криптографических алгоритмов и умения оценивать их сильные и слабые стороны необходима уже серьезная математическая подготовка (на уровне математических факультетов университетов). Это объясняется тем, что современная криптография основана на глубоких результатах таких разделов математики, как теория сложности вычислений, теория чисел, алгебра, теория информации и др. Желающим серьезно изучать криптографию можно порекомендовать обзорную монографию "Криптография в банковском деле" Анохина М. И., Варновского Н. П., Сидельникова В. М., Ященко В. В., М.: МИФИ, 1997.

Как передать нужную информацию нужному адресату в тайне от других? Каждый из читателей в разное время и с разными целями наверняка пытался решить для себя эту практическую задачу (для удобства дальнейших ссылок назовем ее "задача ТП", т. е. задача Тайной Передачи). Выбрав подходящее решение, он, скорее всего, повторил изобретение одного из способов скрытой передачи информации, которым уже не одна тысяча лет.

Размышляя над задачей ТП, нетрудно прийти к выводу, что есть три возможности.
1. Создать абсолютно надежный, недоступный для других канал связи между абонентами.
2. Использовать общедоступный канал связи, но скрыть сам факт передачи информации.
3. Использовать общедоступный канал связи, но передавать по нему нужную информацию в так преобразованном виде, чтобы восстановить ее мог только адресат.

Прокомментируем эти три возможности.
1. При современном уровне развития науки и техники сделать такой канал связи между удаленными абонентами для неоднократной передачи больших объемов информации практически нереально.
2. Разработкой средств и методов скрытия факта передачи сообщения занимается стеганография.

Первые следы стеганографических методов теряются в глубокой древности. Например, известен такой способ скрытия письменного сообщения: голову раба брили, на коже головы писали сообщение и после отрастания волос раба отправляли к адресату. Из детективных произведений хорошо известны различные способы тайнописи между строк обычного, незащищаемого текста: от молока до сложных химических реактивов с последующей обработкой.

Также из детективов известен метод "микроточки": сообщение записывается с помощью современной техники на очень маленький носитель (микроточку), который пересылается с обычным письмом, например, под маркой или где-нибудь в другом, заранее обусловленном месте.

В настоящее время в связи с широким распространением компьютеров известно много тонких методов "запрятывания" защищаемой информации внутри больших объемов информации, хранящейся в компьютере. Наглядный пример эапрятывания текстового файла в графический можно найти в Интернете; он же приведен в журнале "Компьютерра", N48 (225) от 1 декабря 1997 г., на стр. 62. (Следует отметить, что авторы статьи в журнале ошибочно относят стеганографию к криптографии. Конечно, с помощью стеганографии можно прятать и предварительно зашифрованные тексты, но, вообще говоря, стеганография и криптография - принципиально различные направления в теории и практике зашиты информации.)

3. Разработкой методов преобразования (шифрования) информации с целью ее защиты от незаконных пользователей занимается криптография. Такие методы и способы преобразования информации называются шифрами.

Шифрование (зашифрование) - процесс применения шифра к защищаемой информации, т. е. преобразование защищаемой информации (открытого текста) в шифрованное сообщение (шифртекст, криптограмму) с помощью определенных правил, содержащихся в шифре.

Дешифрование - процесс, обратный шифрованию, т. е. преобразование шифрованного сообщения в защищаемую информацию с помощью определенных правил, содержащихся в шифре.

Криптография - прикладная наука, она использует самые последние достижения фундаментальных наук и, в первую очередь, математики. С другой стороны, все конкретные задачи криптографии существенно зависят от уровня развития техники и технологии, от применяемых средств связи и способов передачи информации.

Предмет криптографии. Что же является предметом криптографии? Для ответа на этот вопрос вернемся к задаче ТП, чтобы уточнить ситуацию и используемые понятия. Прежде всего заметим, что эта задача возникает только для информации, которая нуждается в защите. Обычно в таких случаях говорят, что информация содержит тайну или является защищаемой, приватной, конфиденциальной, секретной. Для наиболее типичных, часто встречающихся ситуаций такого типа введены даже специальные понятия:
- государственная тайна;
- военная тайна;
- коммерческая тайна;
- юридическая тайна;
- врачебная тайна и т. д.

Далее мы будем говорить о защищаемой информации, имея в виду следующие признаки такой информации:
- имеется какой-то определенный круг законных пользователей, ко торые имеют право владеть этой информацией;
- имеются незаконные пользователи, которые стремятся овладеть этой информацией с тем, чтобы обратить ее себе во благо, а законным пользователям во вред.

Книги, книги скачать, скачать книгу, книги онлайн, читать онлайн, скачать книги бесплатно, читать книги, читать книги онлайн, читать, библиотека онлайн, книги читать, читать онлайн бесплатно, читать книги бесплатно, электронная книга, читать онлайн книги, лучшие книги математика и физика, интересные книги математика и физика, электронные книги, книги бесплатно, книги бесплатно скачать, скачать бесплатно книги математика и физика, скачать книги бесплатно полностью, онлайн библиотека, книги скачать бесплатно, читать книги онлайн бесплатно без регистрации математика и физика, читать книги онлайн бесплатно математика и физика, электронная библиотека математика и физика, книги читать онлайн математика и физика, мир книг математика и физика, читать бесплатно математика и физика, библиотека онлайн математика и физика, чтение книг математика и физика, книги онлайн бесплатно математика и физика, популярные книги математика и физика, библиотека бесплатных книг математика и физика, скачать электронную книгу математика и физика, бесплатная библиотека онлайн математика и физика, электронные книги скачать, учебники онлайн математика и физика, библиотека электронных книг математика и физика, электронные книги скачать бесплатно без регистрации математика и физика, хорошие книги математика и физика, скачать книги полностью математика и физика, электронная библиотека читать бесплатно математика и физика, электронная библиотека скачать бесплатно математика и физика, сайты для скачивания книг математика и физика, умные книги математика и физика, поиск книг математика и физика, скачать электронные книги бесплатно математика и физика, электронная книга скачать математика и физика, самые лучшие книги математика и физика, электронная библиотека бесплатно математика и физика, читать онлайн бесплатно книги математика и физика, сайт книг математика и физика, библиотека электронная, онлайн книги читать, книга электронная математика и физика, сайт для скачивания книг бесплатно и без регистрации, бесплатная онлайн библиотека математика и физика, где бесплатно скачать книги математика и физика, читать книги бесплатно и без регистрации математика и физика, учебники скачать математика и физика, скачать бесплатно электронные книги математика и физика, скачать бесплатно книги полностью, библиотека онлайн бесплатно, лучшие электронные книги математика и физика, онлайн библиотека книг математика и физика, скачать электронные книги бесплатно без регистрации, библиотека онлайн скачать бесплатно, где скачать бесплатно книги, электронные библиотеки бесплатные, электронные книги бесплатно, бесплатные электронные библиотеки, онлайн библиотека бесплатно, бесплатно читать книги, книги онлайн бесплатно читать, читать бесплатно онлайн, интересные книги читать онлайн математика и физика, чтение книг онлайн математика и физика, электронная библиотека онлайн математика и физика, бесплатная библиотека электронных книг математика и физика, библиотека онлайн читать, читать бесплатно и без регистрации математика и физика, найти книгу математика и физика, каталог книг математика и физика, скачать книги онлайн бесплатно математика и физика, интернет библиотека математика и физика, скачать бесплатно книги без регистрации математика и физика, где можно скачать книги бесплатно математика и физика, где можно скачать книги, сайты для бесплатного скачивания книг, онлайн читать, библиотека читать, книги читать онлайн бесплатно без регистрации, книги библиотека, бесплатная библиотека онлайн, онлайн библиотека читать бесплатно, книги читать бесплатно и без регистрации, электронная библиотека скачать книги бесплатно, онлайн читать бесплатно.

,
С 2017 года возобновляем мобильную версию веб-сайта для мобильных телефонов (сокращенный текстовый дизайн, технология WAP) - верхняя кнопка в левом верхнем углу веб-страницы. Если у Вас нет доступа в Интернет через персональный компьютер или интернет-терминал, Вы можете воспользоваться Вашим мобильным телефоном для посещения нашего веб-сайта (сокращенный дизайн) и при необходимости сохранить данные с веб-сайта в память Вашего мобильного телефона. Сохраняйте книги и статьи на Ваш мобильный телефон (мобильный интернет) и скачивайте их с Вашего телефона на компьютер. Удобное скачивание книг через мобильный телефон (в память телефона) и на Ваш компьютер через мобильный интерфейс. Быстрый Интернет без излишних тэгов, бесплатно (по цене услуг Интернет) и без паролей. Материал приведен для ознакомления. Прямые ссылки на файлы книг и статей на веб-сайте и их продажи третьими лицами запрещены.

Примечание. Удобная текстовая ссылка для форумов, блогов, цитирования материалов веб-сайта, код html можно скопировать и просто вставить в Ваши веб-страницы при цитировании материалов нашего веб-сайта. Материал приведен для ознакомления. Сохраняйте также книги на Ваш мобильный телефон через сеть Интернет (есть мобильная версия сайта - ссылка вверху слева страницы) и скачивайте их с Вашего телефона на компьютер. Прямые ссылки на файлы книг запрещены.



Понравилась статья? Поделиться с друзьями: