Задачи на расчет информационного объёма растрового графического изображения. Решение задач на кодирование графической информации Как определить количество цветов в изображении

Посетите практически любой форум по фотографии, и вы непременно наткнетесь на дискуссию относительно преимуществ RAW и JPEG файлов. Одна из причин, по которой некоторые фотографы предпочитают формат RAW - это бóльшая глубина бита (глубина цвета)*, содержащаяся в файле. Это позволяет вам получать фотографии большего технического качества, чем те, что вы можете получить из файла JPEG.

*Bit depth (глубина бита), или Color depth (глубина цвета, в русском языке чаще используется именно это определение) - количество бит, используемых для представления цвета при кодировании одного пикселя растровой графики или видеоизображения. Часто выражается единицей бит на пиксель (англ. bits per pixel, bpp). Wikipedia

Что такое глубина цвета?

Компьютеры (и устройства, которые управляются встроенными компьютерами, такие как цифровые SLR-камеры) используют двоичную систему исчисления. Двоичная нумерация состоит из двух цифр - 1 и 0 (в отличие от десятичной системы исчисления, включающей 10 цифр). Одна цифра в двоичной системе исчисления называется «бит» (англ. «bit», сокращенно от «binary digit», «двоичная цифра»).

Восьмибитное число в двоичной системе выглядит так: 10110001 (эквивалентно 177 в десятичной системе). Таблица ниже демонстрирует, как это работает.

Максимально возможное восьмибитное число - это 11111111 - или 255 в десятичном варианте. Это значимая цифра для фотографов, поскольку она возникает во многих программах для обработки изображений, а также в старых дисплеях.

Цифровая съемка

Каждый из миллионов пикселей на цифровой фотографии соответствует элементу (также называемому «пиксель», англ. «pixel») на сенсоре (сенсорная матрица) камеры. Эти элементы при попадании на них света генерируют слабый электрический ток, измеряемый камерой и записывающийся в JPEG или RAW файл.

Файлы JPEG

Файлы JPEG записывают информацию о цвете и яркости для каждого пикселя тремя восьмиразрядными числами, по одному числу для красного, зеленого и синего каналов (эти цветовые каналы такие же, как те, что вы видите при построении цветовой гистограммы в Photoshop или на вашей камере).

Каждый восьмибитный канал записывает цвет по шкале 0-255, предоставляя теоретический максимум в 16,777,216 оттенках (256 x 256 x 256). Человеческий глаз может различать приблизительно около 10-12 миллионов цветов, так что это число обеспечивает более чем удовлетворительное количество информации для отображения любого объекта.

Этот градиент был сохранен в 24-битном файле (по 8 бит на каждый канал), что достаточно для передачи мягкой градации цветов.

Этот градиент был сохранен как 16-битный файл. Как вы можете видеть, 16 бит недостаточно для передачи мягкого градиента.

RAW файлы

RAW файлы присваивают больше бит каждому пикселю (большинство камер имеют 12 или 14-битные процессоры). Больше бит - больше числа, а, следовательно, больше тонов на каждый канал.

Это не приравнивается к большему количеству цветов - JPEG файлы уже могут записывать больше цветов, чем может воспринять человеческий глаз. Но каждый цвет сохраняется с гораздо более тонкой градацией тонов. В таком случае говорят, что изображение имеет большую глубину цвета. Таблица ниже иллюстрирует, как глубина бита приравнивается к количеству оттенков.

Обработка внутри камеры

Когда вы настраиваете камеру на запись фотографий в режиме JPEG, внутренний процессор камеры считывает информацию, полученную от сенсора в момент, когда вы делаете снимок, обрабатывает ее в соответствии с параметрами, выставленными в меню камеры (баланс белого, контраст, насыщенность цвета и т.д.), и записывает ее как 8-битный JPEG файл. Вся дополнительная информация, полученная сенсором, отбрасывается и теряется навсегда. В итоге, вы используете лишь 8 бит из 12 или 14 возможных, которые сенсор способен зафиксировать.

Постобработка

RAW файл отличается от JPEG тем, что содержит все данные, зафиксированные сенсором камеры за период экспонирования. Когда вы обрабатываете RAW файл, используя программное обеспечение для конвертации RAW, программа осуществляет преобразования, аналогичные тем, что производит внутренний процессор камеры, когда вы снимаете в JPEG. Различие состоит в том, что вы выставляете параметры внутри используемой программы, а те, что выставлены в меню камеры, игнорируются.

Выгода от дополнительной глубины бита RAW файла становится очевидной при постобработке. JPEG файл стоит использовать, если вы не собираетесь делать какую-либо постобработку и вам достаточно выставить экспозицию и все другие настройки во время съемки.

Однако, в реальности большинство из нас хочет внести хотя бы несколько исправлений, если это даже просто яркость и контраст. И это именно тот момент, когда JPEG файлы начинают уступать. С меньшим количеством информации на пиксель, когда вы проводите корректировку яркости, контраста или цветового баланса, оттенки могут визуально разделиться.

Результат наиболее очевиден в областях плавного и продолжительного перехода оттенков, таких как на голубом небе. Вместо мягкого градиента от светлого к темному, вы увидите расслоение на цветовые полосы. Этот эффект также известен как постеризация (англ. «posterisation»). Чем больше вы корректируете, тем сильнее он проявляется на изображении.

С файлом RAW, вы можете вносить гораздо более сильные изменения в оттенок цвета, яркость и контраст до того, как вы увидите снижение качества изображения. Это также позволяют сделать некоторые функции RAW-конвертера, такие как настройка баланса белого и восстановление «пересвеченных» областей (highlight recovery).

Это фото получено из JPEG файла. Даже при таком размере видны полосы в небе как результат постобработки.

При тщательном рассмотрении на небе виден эффект постеризации. Работа с 16-битным TIFF файлом может ликвидировать, или по крайней мере минимизировать, эффект полос.

16-битные TIFFфайлы

Когда вы обрабатываете RAW файл, ваше программное обеспечение предоставляет вам опцию по сохранению его как 8 или 16-битного файла. Если вы довольны обработкой и не хотите вносить еще какие-либо изменения, вы можете сохранить его как 8-битный файл. Вы не заметите никаких различий между файлом 8 бит и 16 бит на вашем мониторе или когда вы распечатаете изображение. Исключение - тот случай, когда у вас есть принтер, распознающий 16-битные файлы. В этом случае, из файла 16 бит вы можете получить лучший результат.

Однако если вы планируете осуществлять постобработку в Photoshop, тогда рекомендуется сохранять изображение как 16-битный файл. В этом случае изображение, полученное из 12 или 14-битного сенсора, будет «растянуто», чтобы заполнить 16-битный файл. После этого вы можете поработать над ним в Photoshop, зная, что дополнительная глубина цвета поможет вам достичь максимального качества.

Опять же, когда вы завершили процесс обработки, вы можете сохранить файл как 8-битный файл. Журналы, издатели книг и стоки (и практически любой клиент, покупающий фотографии), требуют 8-битные изображения. Файлы 16 бит могут потребоваться, только если вы (или кто-то другой) намереваетесь редактировать файл.

Это изображение, которое я получил, используя настройку RAW+JPEG на камере EOS 350D. Камера сохранила две версии файла - JPEG, обработанный процессором камеры, и RAW файл, содержащий всю информацию, записанную 12-битным сенсором камеры.

Здесь вы видите сравнение правого верхнего угла обработанного JPEG файла и RAW файла. Оба файла были созданы камерой с одной и той же настройкой экспозиции, и единственное различие между ними - это глубина цвета. Я смог «вытянуть» не различимые в JPEG «пересвеченные» детали в RAW файле. Если бы я хотел поработать над этим изображением дальше в Photoshop, я мог бы сохранить его как 16-битный файл TIFF, чтобы обеспечить максимально возможное качество изображения в течение процесса обработки.

Почему фотографы используют JPEG?

То, что не все профессиональные фотографы используют формат RAW все время, еще ничего не значит. Как свадебные, так и спортивные фотографы, например, зачастую работают именно с форматом JPEG.

Для свадебных фотографов, которые могут снять тысячи снимков на свадьбе, это экономит время на последующей обработке.

Спортивные фотографы используют JPEG файлы для того, чтобы иметь возможность отсылать фотографии своим графическим редакторам в течение мероприятия. В обоих случаях скорость, эффективность и меньший размер файлов формата JPEG делает использование этого типа файлов логичным.

Глубина цвета на компьютерных экранах

Глубина бита также относится к глубине цвета, которую компьютерные мониторы способны отображать. Читателю, использующему современные дисплеи, возможно, тяжело будет в это поверить, но компьютеры, которыми я пользовался в школе, могли воспроизводить только 2 цвета - белый и черный. «Must-have» компьютер того времени - Commodore 64, способный воспроизводить аж 16 цветов. В соответствии с информацией из «Википедии», было продано более 12 единиц этого компьютера.


Компьютер Commodore 64. Автор фотографии Билл Бертрам (Bill Bertram)

Несомненно, вы не сможете редактировать фотографии на машине с 16 цветами (64 Кб оперативной памяти в любом случае больше не потянут), и изобретение 24-битных дисплеев с реалистичным цветовоспроизведением - одна из вещей, которые сделали цифровую фотографию возможной. Дисплеи с реалистичным цветовоспроизведением, как и файлы JPEG, формируются при помощи трех цветов (красного, зеленого и синего), каждый с 256 оттенками, записанными в 8-битную цифру. Большинство современных мониторов используют либо 24-битные, либо 32-битные графические устройства с реалистичным цветовоспроизведением.

Файлы HDR

Многие из вас знают, что изображения с расширенным динамическим диапазоном (HDR) создаются путем комбинирования нескольких версий одного и того же изображения, снятого с разными настройками экспозиции. Но знаете ли вы, что программное обеспечение формирует 32-битное изображение с более чем 4 миллиардами тональных значений на каждый канал на пиксель - просто скачок по сравнению с 256 оттенками в файле JPEG.

Настоящие HDR файлы не могут быть корректно отображены на компьютерном мониторе или распечатанной странице. Вместо этого они урезаются до 8 или 16-битных файлов при помощи процесса, называемого тональная компрессия (англ. «tone-mapping»), который сохраняет характеристики оригинального изображения с расширенным динамическим диапазоном, но позволяет воспроизвести его на устройствах с узким динамическим диапазоном.

Заключение

Пиксели и биты - основные элементы для построения цифрового изображения. Если вы хотите получить максимально хорошее качество снимка на вашей камере, необходимо понимать концепцию глубины цвета и причины, по которым формат RAW позволяет получить изображение лучшего качества.

При заказе печати на пакетах рекомендуется наносить простые изображения для исполнения не более чем в одном-трех цветах. Стоит заметить, что при создании макета хорошим дизайнером это никак не скажется на качестве и восприятии потребителем подаваемой рекламной информации, а кроме того, сократит стоимость и сроки производства заказа. Также следует учесть возможность совмещения цветов в технологическом плане и подобрать подходящее оборудование. Ведь далеко не все наносимые изображения геометрически не зависят друг от друга, часто некоторые цвета жестко связаны между собой и их необходимо стыковать.

Если вам все же необходим рисунок с большим количеством различных цветов, то лучше воспользоваться специальным оборудованием, которое позволяет выполнять полноцветную печать на пакетах . Принцип таких машин заключается в наличии ультрафиолетовой сушки, так как для полноцветной печати могут использоваться только УФ-отверждаемые краски. Разумеется, данная технология подразумевает не только высокую стоимость нанесения полноцветных изображений на пакет, но и печать более крупных точек, поэтому не следует ожидать качества картинки, как на бумаге.

1В процессе преобразования растрового графического изображения количество цветов уменьшилось с 64 до 8. Во сколько раз уменьшился объем, занимаемый

им в памяти. Контрольная работа по теме «Компьютерная графика» 2 вариант 2Мультимедиа – это А) получение движущихся изображений на дисплее; Б) прикладная программа для создания и обработки рисунков; В) объединение высококачественного изображения с реалистическим звуком; Г) область информатики, занимающаяся проблемами рисования на ЭВМ. 3Выберите правильную последовательность этапов развития компьютерной графики: а) Появление графических дисплеев; b) Символьная графика; c) Появление графопостроителей; d) Появление принтера цветной печати. А) a, c, d, b; Б) b, c, a, d; С) b, a, c, d; Г) a, b, d, c. 3. Созданием произвольных рисунков, чертежей занимается А) научная графика; Б) конструкторская графика; В) деловая графика; Г) иллюстративная графика. 4. Какое устройство компьютера осуществляет процесс дискретизации звука? А) звуковая карта; Б) колонки; В) наушники; Г) процессор. 5. Растровое изображение представляет из себя … А)мозаику из очень мелких элементов - пикселей; Б) сочетание примитивов; В) палитру цветов. 6. Точка графического экрана может быть окрашена в один из цветов: красный, зелёный, коричневый, чёрный. Какой объём видеопамяти будет выделен для кодирования каждого пикселя? А) 4 бита; Б) 2 байта; В) 4 байта; Г) 2 бита; Д) 3 бита. 7. Инструментом ГР является: А) Линия; Б) цвет; В) разбрызгиватель; Г) рисунок. 8.Графическим примитивом является: А)линия; Б)ластик; В) копирование; Г)цвет. 9. Для получения 4-х цветного изображения на каждый пиксель необходимо выделить А) 1 байт; Б) 1 бит; В) 2 байта; Г) 2 бита 10.Дискретный сигнал – это …А) цифровой сигнал; Б) количество измерений, производимых прибором за 1 секунду; В) непрерывно меняющееся со временем значение физической величины; Г) таблица с результатами измерений физической величины в фиксированные моменты времени. 11. При какой частоте дискретизации происходит более точное воспроизведение звука? А) 44,1 кГц; Б) 11 кГц; В) 22 кГц; Г) 8 кГц. 12. Что можно отнести к недостаткам растровой графики по сравнению с векторной? А) Большой объём графических файлов. Б) Фотографическое качество изображения. В) Возможность просмотра изображения на экране графического дисплея. Г) Искажения при масштабировании. 13.Что можно отнести к недостаткам ж\к монитора? А) малый вес; Б) затемнения при изменении угла обзора; В) отсутствие э/м излучения; Г) малый объем. 14Для кодирования зелёного цвета служит код 1011. Сколько цветов в палитре? 15Найдите объём записываемого звукового квадроаудиофайла, если запись велась 4 минуты, с использованием 16-битовой глубины кодирования звука и частотой дискретизации 32кГц. 16Для хранения растрового изображения размером 64 на 64 пикселя отвели 512 байтов памяти. Каково максимально возможное число цветов в палитре изображения? 17 В процессе преобразования растрового графического файла количество цветов уменьшилось с 512 до 8. Во сколько раз уменьшился информационный объем файла?

1) Объем звукового стереоаудиофайла – 7500 Кбайт, глубина звука – 32 бит, длительность звучания этого файла – 10 сек. С какой частотой дискретизации

записан данный файл?
2) Информационный объем изображения размеров 30х30 точек равен 1012,5 байт. Определить количество цветов в палитре, используемой для этого изображения.

Решение задач на кодирование графической информации.

Растровая графика.

Векторная графика.

Введение

Данное электронное пособие содержит группу задач по теме «Кодирование графической информации». Сборник задач разбит на типы задач исходя из указанной темы. Каждый тип задач рассматривается с учетом дифференцированного подхода, т. е. рассматриваются задачи минимального уровня (оценка «3»), общего уровня (оценка «4»), продвинутого уровня (оценка «5»). Приведенные задачи взяты из различных учебников (список прилагается). Подробно рассмотрены решения всех задач, даны методические рекомендации для каждого типа задач, приведен краткий теоретический материал. Для удобства пользования пособие содержит ссылки на закладки.

Растровая графика.

Типы задач:

1. Нахождение объема видеопамяти.

2. Определение разрешающей способности экрана и установка графического режима.

3.

1. Нахождение объема видеопамяти

В задачах такого типа используются понятия:

· объем видеопамяти,

· графический режим,

· глубина цвета,

· разрешающая способность экрана,

· палитра.

Во всех подобных задачах требуется найти ту или иную величину.

Видеопамять - это специальная оперативная память, в которой формируется графическое изображение. Иными словами для получения на экране монитора картинки её надо где-то хранить. Для этого и существует видеопамять. Чаще всего ее величина от 512 Кб до 4 Мб для самых лучших ПК при реализации 16,7 млн. цветов.


Объем видеопамяти рассчитывается по формуле: V= I* X* Y, где I – глубина цвета отдельной точки, X, Y – размеры экрана по горизонтали и по вертикали (произведение х на у – разрешающая способность экрана).

Экран дисплея может работать в двух основных режимах: текстовом и графическом .

В графическом режиме экран разделяется на отдельные светящиеся точки, количество которых зависит от типа дисплея, например 640 по горизонтали и 480 по вертикали. Светящиеся точки на экране обычно называют пикселями , их цвет и яркость может меняться. Именно в графическом режиме появляются на экране компьютера все сложные графические изображения, создаваемыми специальными программами, которые управляют параметрами каждого пикселя экрана. Графические режимы характеризуются такими показателями как:

- разрешающая способность (количество точек, с помощью которых на экране воспроизводится изображение) - типичные в настоящее время уровни разрешения 800*600 точек или 1024*768 точек. Однако для мониторов с большой диагональю может использоваться разрешение 1152*864 точки.

- глубина цвета (количество бит, используемых для кодирования цвета точки), например, 8, 16, 24, 32 бита. Каждый цвет можно рассматривать как возможное состояние точки, Тогда количество цветов, отображаемых на экране монитора может быть вычислено по формуле K =2 I , где K – количество цветов, I – глубина цвета или битовая глубина.

Кроме перечисленных выше знаний учащийся должен иметь представление о палитре:

- палитра (количество цветов, которые используются для воспроизведения изображения), например 4 цвета, 16 цветов, 256 цветов, 256 оттенков серого цвета, 216 цветов в режиме называемом High color или 224 , 232 цветов в режиме True color.

Учащийся должен знать также связи между единицами измерения информации, уметь переводить из мелких единиц в более крупные, Кбайты и Мбайты, пользоваться обычным калькулятором и Wise Calculator.

Уровень «3»

1. Определить требуемый объем видеопамяти для различных графических режимов экрана монитора, если известна глубина цвета на одну точку.(2.76 )

Режим экрана

Глубина цвета (бит на точку)

Решение:

1. Всего точек на экране (разрешающая способность): 640 * 480 = 307200
2. Необходимый объем видеопамяти V= 4 бит * 307200 = 1228800 бит = 153600 байт = 150 Кбайт .
3. Аналогично рассчитывается необходимый объем видеопамяти для других графических режимов. При расчетах учащийся пользуется калькулятором для экономии времени.

Ответ:

Режим экрана

Глубина цвета (бит на точку)

150 Кб

300 Кб

600 Кб

900 Кб

1,2 Мб

234 Кб

469 Кб

938 Кб

1,4 Мб

1,8 Мб

384 Кб

768 Кб

1,5 Мб

2,25 Мб

640 Кб

1,25 Мб

2,5 Мб

3,75 Мб

2. Черно-белое (без градаций серого) растровое графическое изображение имеет размер 10 ´10 точек. Какой объем памяти займет это изображение?(2.6 8 )

Решение:

1. Количество точек -100

2. Так как всего 2 цвета черный и белый. то глубина цвета равна =2)

3. Объем видеопамяти равен 100*1=100 бит

Аналогично решается задаа 2.69

3. Для хранения растрового изображения размером 128 x 128 пикселей отвели 4 КБ памяти. Каково максимально возможное число цветов в палитре изображения. (ЕГЭ_2005, демо, уровень А). (См. также задачу 2.73 )

Решение:

1. Определим количество точек изображения. 128*128=16384 точек или пикселей.

2. Объем памяти на изображение 4 Кб выразим в битах, так как V=I*X*Y вычисляется в битах. 4 Кб=4*1024=4 096 байт = 4096*8 бит =32768 бит

3. Найдем глубину цвета I =V/(X*Y)=32768:16384=2

4. N=2I, где N – число цветов в палитре. N=4

Ответ: 4

4. Сколько бит видеопамяти занимает информация об одном пикселе на ч/б экране (без полутонов)?(, C. 143, пример 1)

Решение:

Если изображение Ч/Б без полутонов, то используется всего два цвета –черный и белый, т. е. К=2, 2i =2, I= 1 бит на пиксель.

Ответ: 1 пиксель

5. Какой объем видеопамяти необходим для хранения четырех страниц изображения, если битовая глубина равна 24, а разрешающая способность дисплея - 800 х 600 пикселей? (, №63)

Решение:

1. Найдем объем видеопамяти для одной страницы: 800*600*24= бит =1440000 байт =1406,25 Кб ≈1, 37 Мб

2. 1,37*4 =5,48 Мб ≈5.5 Мб для хранения 4 страниц.

Ответ: 5.5 Мб

Уровень «4»

6.Определить объем видеопамяти компьютера, который необходим для реализации графического режима монитора High Color с разрешающей способностью 1024 х 768 точек и палитрой цветов из 65536 цветов. (2.48 )

Если ученик помнит, что режим High Color – это 16 бит на точку, то объем памяти можно найти, определив число точек на экране и умножив на глубину цвета, т. е. 16. Иначе ученик может рассуждать так:

Решение:

1. По формуле K=2I, где K – количество цветов, I – глубина цвета определим глубину цвета. 2I =65536

Глубина цвета составляет: I = log= 16 бит (вычисляем с помощью программы Wise Calculator)

2.. Количество точек изображения равно: 1024´768 =

3. Требуемый объем видеопамяти равен: 16 бит ´ = 12 бит = 1572864 байт = 1536 Кб =1,5 Мб (»1,2 Мбайта. Ответ дан в практикуме Угринович) . Приучаем учеников, переводя в другие единицы, делить на 1024, а не на 1000.

Ответ: 1,5 Мб

7. В процессе преобразования растрового графического изображения количество цветов уменьшилось с 65536 до 16. Во сколько раз уменьшится объем занимаемой им памяти? (2.70, )

Решение:

Чтобы закодировать 65536 различных цветов для каждой точки, необходимо 16 бит. Чтобы закодировать 16 цветов, необходимо всего 4 бита. Следовательно, объем занимаемой памяти уменьшился в 16:4=4 раза.

Ответ: в 4 раза

8. Достаточно ли видеопамяти объемом 256 Кбайт для работы монитора в режиме 640 ´ 480 и палитрой из 16 цветов? (2.77 )

Решение:

1. Узнаем объем видеопамяти, которая потребуется для работы монитора в режиме 640х480 и палитрой в 16 цветов. V=I*X*Y=640*480*4 (24 =16, глубина цвета равна 4),

V= 1228800 бит = 153600 байт =150 Кб.

2. 150 < 256, значит памяти достаточно.

Ответ: достаточно

9. Укажите минимальный объем памяти (в килобайтах), достаточный для хранения любого растрового изображения размером 256 х 256 пикселей, если известно, что в изображении используется палитра из 216 цветов. Саму палитру хранить не нужно.

1) 128

2) 512

3) 1024

4) 2048

(ЕГЭ_2005, уровень А)

Решение:

Найдем минимальный объем памяти, необходимый для хранения одного пикселя. В изображении используется палитра из 216 цветов, следовательно, одному пикселю может быть сопоставлен любой из 216 возможных номеров цвета в палитре. Поэтому, минимальный объем памяти, для одного пикселя будет равен log2 216 =16 битам. Минимальный объем памяти, достаточный для хранения всего изображения будет равен 16*256*256 =24 * 28 * 28 =220 бит=220: 23 =217 байт = 217: 210 =27 Кбайт =128 Кбайт, что соответствует пункту под номером 1.

Ответ: 1

10. Используются графические режимы с глубинами цвета 8, 16. 24, 32 бита. Вычислить объем видеопамяти, необходимые для реализации данных глубин цвета при различных разрешающих способностях экрана.

Примечание: задача сводится в конечном итоге к решению задачи №1 (уровень «3», но ученику самому необходимо вспомнить стандартные режимы экрана.

11. Сколько секунд потребуется модему, передающему сообщения со скоростью 28800 бит/с, чтобы передать цветное растровое изображение размером 640 х 480 пикселей, при условии, что цвет каждого пикселя кодируется тремя байтами? (ЕГЭ_2005, уровень В)

Решение:

1. Определим объем изображения в битах:

3 байт = 3*8 = 24 бит,

V=I*X*Y=640*480*24 бит =7372800 бит

2. Найдем число секунд на передачу изображения: 7372800: 28800=256 секунд

Ответ: 256.

12. Сколько секунд потребуется модему, передающему сообщения со скоростью 14400 бит/сек, чтобы передать цветное растровое изображение размером 800 х 600 пикселей, при условии, что в палитре 16 миллионов цветов? (ЕГЭ_2005, уровень В)

Решение:

Для кодирования 16 млн. цветов требуется 3 байта или 24 бита (Графический режим True Color). Общее количество пикселей в изображении 800 х 600 =480000. Так как на 1 пиксель приходится 3 байта, то на 480000 пикселей приходится 480000*3=1 440 000 байт или бит. : 14400 = 800 секунд.

Ответ: 800 секунд.

13. Современный монитор позволяет получать на экране различных цветов. Сколько бит памяти занимает 1 пиксель? ( , с.143, пример 2)

Решение:

Один пиксель кодируется комбинацией двух знаков «0» и «1». Надо узнать длину кода пикселя.

2х =, log2 =24 бит

Ответ: 24.

14. Каков минимальный объем памяти (в байтах), достаточный для хранения черно-белого растрового изображения размером 32 х 32 пикселя, если известно, что в изображении используется не более 16 градаций серого цвета.(ЕГЭ_2005, уровень А)

Решение:

1. Глубина цвета равна 4, т. к. 16 градаций цвета используется.

2. 32*32*4=4096 бит памяти для хранения черно-белого изображения

3. 4096: 8 = 512 байт.

Ответ: 512 байт

Уровень «5»

15. Монитор работает с 16 цветной палитрой в режиме 640*400 пикселей. Для кодирования изображения требуется 1250 Кбайт. Сколько страниц видеопамяти оно занимает? (Задание 2,Тест I-6)

Решение:

1. Т. к. страница – раздел видеопамяти, вмещающий информацию об одном образе экрана одной «картинки» на экране, т. е. в видеопамяти могут размещаться одновременно несколько страниц, то, чтобы узнать число страниц надо поделить объем видеопамяти для всего изображения на объем памяти на 1 страницу. К -число страниц, К= Vизобр/ V1 стр

Vизобр =1250 Кб по условию

1. Для этого вычислим объем видеопамяти для одной страницы изображения с 16 цветовой палитрой и разрешающей способностью 640*400.

V1 стр = 640*400*4 , где 4- глубина цвета (24 =16)

V1 стр = 1024000 бит = 128000 байт =125 Кб

3. К=1250: 125 =10 страниц

Ответ: 10 страниц

16. Страница видеопамяти составляет 16000 байтов. Дисплей работает в режиме 320*400 пикселей. Сколько цветов в палитре? (Задание 3,Тест I-6)

Решение:

1. V=I*X*Y – объем одной страницы, V=16000 байт = 128000 бит по условию. Найдем глубину цвета I.

I= 128000 / (320*400)=1.

2. Определим теперь, сколько цветов в палитре. K=2 I, где K – количество цветов, I – глубина цвета. K=2

Ответ: 2 цвета.

17. Сканируется цветное изображение размером 10 ´10 см. Разрешающая способность сканера 600 dpi и глубина цвета 32 бита. Какой информационный объем будет иметь полученный графический файл. (2.44, , аналогично решается задача 2.81 )

Решение:

1. Разрешающая способность сканера 600 dpi (dot per inch - точек на дюйм) означает, что на отрезке длиной 1 дюйм сканер способен различить 600 точек. Переведем разрешающую способность сканера из точек на дюйм в точки на сантиметр:

600 dpi: 2,54 » 236 точек/см (1 дюйм = 2.54 см.)

2. Следовательно, размер изображения в точках составит 2360´2360 точек. (умножили на 10 см.)

3. Общее количество точек изображения равно:

4. Информационный объем файла равен:

32 бит ´ 5569600 = бит » 21 Мбайт

Ответ: 21 Мбайт

18. Объем видеопамяти равен 256 Кб. Количество используемых цветов -16. Вычислите варианты разрешающей способности дисплея. При условии, что число страниц изображения может быть равно 1, 2 или 4. (, №64, стр. 146)

Решение:

1. Если число страниц равно 1 , то формулу V=I*X*Y можно выразить как

256 *1024*8 бит = X*Y*4 бит, (так как используется 16 цветов, то глубина цвета равна 4 бит.)

т. е. 512*1024 = X*Y; 524288 = X*Y.

Соотношение между высотой и шириной экрана для стандартных режимов не различаются между собой и равны 0,75. Значит, чтобы найти X и Y, надо решить систему уравнений:

Выразим Х=524288/ Y, подставим во второе уравнение, получим Y2 =524288*3/4=393216. Найдем Y≈630; X=524288/630≈830

630 х 830 .

2. Если число страниц равно 2 , то одна страница объемом 256:2=128 Кбайт, т. е

128*1024*8 бит = X*Y*4 бит, т. е. 256*1024 = X*Y; 262144 = X*Y.

Решаем систему уравнений:

Х=262144/ Y; Y2 =262144*3/4=196608; Y=440, Х=600

Вариантом разрешающей способности может быть 600 х 440 .

4. Если число страниц равно 4, то 256:4 =64; 64*1024*2=X*Y; 131072=X*Y; решаем систему и размером точки экрана 0,28 мм. (2.49 )

Решение:

https://pandia.ru/text/78/350/images/image005_115.gif" width="180" height="96 src=">

1. Задача сводится к нахождению числа точек по ширине экрана. Выразим размер диагонали в сантиметрах . Учитывая, что 1 дюйм=2,54 см., имеем: 2,54 см 15 = 38,1 см.

2. Определим соотношение между высотой и шириной экр ана для часто встречающегося режима экрана 1024х768 точек: 768: 1024 = 0,75.

3. Определим ширину экрана . Пусть ширина экрана равна L , а высота h ,

h:L =0,75, тогда h= 0,75L.

По теореме Пифагора имеем:

L2 + (0,75L)2 = 38,12

1,5625 L2 = 1451,61

L ≈ 30,5 см.

4. Количество точек по ширине экрана равно:

305 мм: 0,28 мм = 1089.

Следовательно, максимально возможным разрешением экрана монитора является 1024х768.

Ответ: 1024х768 .

26. Определить соотношение между высотой и шириной экрана монитора для различных графических режимов. Различается ли это соотношение для различных режимов? а)640х480; б)800х600; в)1024х768; а)1152х864; а)1280х1024. Определить максимально возможную разрешающую способность экрана для монитора с диагональю 17" и размером точки экрана 0,25 мм. (2.74 )

Решение:

1. Определим соотношение между высотой и шириной экрана для перечисленных режимов, они почти не различаются между собой:

2. Выразим размер диагонали в сантиметрах:

2,54 см 17 = 43,18 см.

3. Определим ширину экрана. Пусть ширина экрана равна L, тогда высота равна 0,75L (для первых четырех случаев) и 0,8L для последнего случая.

По теореме Пифагора имеем:

Следовательно, максимально возможным разрешением экрана монитора является. 1280х1024

Ответ: 1280х1024

3. Кодировка цвета и изображения.

Учащиеся пользуются знаниями, полученными ранее Системы счисления, перевод чисел из одной системы в другую.

Используется и теоретический материал темы:

Цветное растровое изображение формируется в соответствие с цветовой моделью RGB, в которой тремя базовыми цветами являются Red (красный), Green (зеленый) и Blue (синий). Интенсивность каждого цвета задается 8-битным двоичным кодом, который часто для удобства выражают в шестнадцатеричной системе счисления. В этом случае используется следующий формат записи RRGGBB.

Уровень «3»

27. Запишите код красного цвета в двоичном, шестнадцатеричном и десятичном представлении. (2.51 )

Решение:

Красный цвет соответствует максимальному значению интенсивности красного цвета и минимальным значениям интенсивностей зеленого и синего базовых цветов, что соответствует следующим данным:

Коды/Цвета

Красный

Зеленый

Синий

двоичный

шестнадцатеричный

десятичный

28. Сколько цветов будет использоваться, если для каждого цвета пикселя взято 2 уровня градации яркости? 64 уровня яркости каждого цвета?

Решение:

1. Всего для каждого пикселя используется набор из трех цветов (красный, зеленый, синий) со своими уровнями яркости (0-горит, 1-не горит). Значит, K=23 =8 цветов.

Ответ: 8; 262 144 цвета.

Уровень «4»

29. Заполните таблицу цветов при 24- битной глубине цвета в 16- ричном представлении.

Решение:

При глубине цвета в 24 бита на каждый из цветов выделяется по 8 бит, т. е для каждого из цветов возможны 256 уровней интенсивности (28 =256). Эти уровни заданы двоичными кодами (минимальная интенсивность, максимальная интенсивность). В двоичном представлении получается следующее формирование цветов:

Название цвета

Интенсивность

Красный

Зеленый

Синий

Черный

Красный

Зеленый

Синий

Белый

Переведя в 16-ричную систему счисления имеем:

Название цвета

Интенсивность

Красный

Зеленый

Синий

Черный

Красный

Зеленый

Синий

Белый

30.На «маленьком мониторе» с растровой сеткой размером 10 х 10 имеется черно-белое изображение буквы «К». Представить содержимое видеопамяти в виде битовой матрицы, в которой строки и столбцы соответствуют строкам и столбцам растровой сетки. ( , c.143, пример 4)

9 10

Решение:

Для кодирования изображения на таком экране требуется 100 бит (1 бит на пиксель) видеопамяти. Пусть «1» означает закрашенный пиксель, а «0» - не закрашенный. Матрица будет выглядеть следующим образом:

0001 0001 00

0001 001 000

0001 01 0000

00011 00000

0001 01 0000

0001 001 000

0001 0001 00

Эксперименты:

1. Поиск пикселей на мониторе.

Вооружиться увеличительным стеклом и попытаться увидеть триады красных, зеленых и синих (RGB –от англ. « Red – Green – Blue» точек на экране монитора. (, .)

Как предупреждает нас первоисточник, результаты экспериментов будут успешными далеко не всегда. Причина в том. Что существуют разные технологии изготовления электронно-лучевых трубок. Если трубка выполнена по технологии «теневая маска», тогда можно увидеть настоящую мозаику из точек. В других случаях, когда вместо маски с отверстиями используется система нитей из люминофора трех основных цветов (апертурная решетка), картина будет совсем иной. Газета приводит очень наглядные фотографии трех типичных картин, которые могут увидеть «любопытные ученики».

Ребятам полезно было бы сообщить, что желательно различать понятия «точки экрана» и пиксели. Понятие «точки экрана» - физически реально существующие объекты. Пиксели- логические элементы изображения. Как это можно пояснить? Вспомним. Что существует несколько типичных конфигураций картинки на экране монитора: 640 х 480, 600 х 800 пикселей и другие. Но на одном и том же мониторе можно установить любую из них.. Это значит, что пиксели это не точки монитора. И каждый их них может быть образован несколькими соседними светящимися точками (в пределе одной). По команде окрасить в синий цвет тот или иной пиксель, компьютер, учитывая установленный режим дисплея, закрасит одну или несколько соседних точек монитора. Плотность пикселей измеряется как количество пикселей на единицу длины. Наиболее распространены единицы, называемые кратко как (dots per inch - количество точек на дюйм, 1 дюйм = 2, 54 см). Единица dpi общепринята в области компьютерной графики и издательского дела. Обычно плотность пикселей для экранного изображения составляет 72 dpi или 96dpi.

2. Проведите эксперимент в графическом редакторе в случае, если для каждого цвета пикселя взято 2 уровня градации яркости? Какие цвета вы получите? Оформите в виде таблицы.

Решение:

Красный

Зеленый

Синий

Цвет

Бирюзовый

Малиновый

Векторная графика:

1. Задачи на кодирование векторного изображения.

2. Получение векторного изображения с помощью векторных команд

При векторном подходе изображение рассматривается как описание графических примитивов, прямых, дуг, эллипсов, прямоугольников, окружностей, закрасок и пр. Описываются положение и форма этих примитивов в системе графических координат.

Таким образом векторное изображение кодируется векторными командами, т. е описывается с помощью алгоритма. Отрезок прямой линии определяется координатами его концов, окружность – координатами центра и радиусом, многоугольник – координатами его углов, закрашенная область - линией границы и цветом закраски. Целесообразно, чтобы учащиеся имели таблицу системы команд векторной графики (, стр.150):

Команда

Действие

Линия к X1, Y1

Нарисовать линию от текущей позиции в позицию (X1, Y1).

Линия X1, Y1, X2,Y2

Нарисовать линию с координатами начала X1, Y1 и координатами конца X2, Y2. Текущая позиция не устанавливается.

Окружность X, Y,R

Нарисовать окружность; X, Y – координаты центра, а R – длина радиуса.

Эллипс X1, Y1, X2,Y2

Нарисовать эллипс, ограниченный прямоугольником; (X1, Y1) –координаты левого верхнего, а (X2,Y2) – правого нижнего угла прямоугольника.

Прямоугольник X1, Y1, X2,Y2

Нарисовать прямоугольник; (X1, Y1)- координаты левого верхнего угла, (X2,Y2) - координаты правого нижнего угла прямоугольника.

Цвет рисования Цвет

Установить текущий цвет рисования.

Цвет закраски Цвет

Установить текущий цвет закраски

Закрасить X, Y, ЦВЕТ ГРАНИЦЫ

Закрасить произвольную замкнутую фигуру; X, Y – координаты любой точки внутри замкнутой фигуры, ЦВЕТ ГРАНИЦЫ –цвет граничной линии.

1. Задачи на кодирование векторного изображения.

Уровень «3»

1. Описать букву «К» последовательностью векторных команд.

Литература:

1. , Информатика для юристов и экономистов, с. 35-36 (теоретический материал)

2. , Информатика и ИТ, с.112-116.

3. Н. Угринович, Л. Босова, Н. Михайлова, Практикум по информатике и ИТ, с.69-73. (задачи 2.67-2.81)

4. , Популярные лекции об устройстве компьютера. – СПб., 2003, с 177-178.

5. В поисках пикселя или типы электронно-лучевых трубок.// Информатика. 2002, 347, с.16-17.

6. И. Семакин, Е Хеннер, Информатика. Задачник-практикум, т.1, Москва, ЛБЗ, 1999, с.142-155.

Электронные учебники:

1. , Информация в школьном курсе информатики.

2. , Решебник по теме «Теория информации»

Тесты:

1. Тест I-6 (кодирование и измерение графической информации)



Понравилась статья? Поделиться с друзьями: